Introducción

Si f es continua y no negativa en el intervalo [\alpha, \beta], 0<\beta - \alpha<2\pi, entonces el parea de la región limitada (o acotada) por la gráfica de r = f(\theta) entre las rectas radiales \theta = \alpha y \theta = \beta está dada por:

\displaystyle A = \frac{1}{2} \int _{\alpha}^{\beta}{{[f(\theta)]}^{2} d\theta}

\displaystyle A = \frac{1}{2} \int _{\alpha}^{\beta}{r^2 d\theta}

donde (0< \beta - \alpha < 2\pi)

Problemas resueltos

Problema 1. Encontrar el área de una región polar de r = 3 \cos{3\theta}.

Solución. Primero se despeja la variable θ de la función r

r = 3 \cos{3\theta}

0 = 3 \cos{3\theta}

\displaystyle \frac{0}{3} = \cos{3\theta}

0 = \cos{3\theta}

\cos{3\theta} = 0

3\theta = \arccos{(0)}

\displaystyle 3\theta = \pm \frac{1}{2} \pi

\displaystyle \theta = \pm \frac{1}{6} \pi = \pm \frac{\pi}{6}

Por lo que el intervalo es

\displaystyle - \frac{1}{6} \pi < \theta < \frac{1}{6} \pi

Así que, en la ecuación r = 3 \cos{3\theta}, dentro del intervalo obtenido, los límites son \displaystyle \alpha =  -\frac{\pi}{6} y \displaystyle \beta = \frac{\pi}{6}. Sustituyendo en la ecuación.

\displaystyle A = \frac{1}{2} \int _{\alpha}^{\beta}{r^2 d\theta}

\displaystyle A = \frac{1}{2} \int _{-\frac{\pi}{6}}^{\frac{\pi}{6}}{{\left(3 \cos{3\theta} \right)}^{2} \ d\theta} = \frac{1}{2} \int _{-\frac{\pi}{6}}^{\frac{\pi}{6}}{9 {\cos}^{2}{3\theta} \ d\theta}

\displaystyle A = \frac{9}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}{{\cos}^{2}{3\theta} \ d\theta} = \frac{9}{2} \int _{-\frac{\pi}{6}}^{\frac{\pi}{6}}{(\frac{1}{2} + \frac{1}{2} \cos{6\theta}) \ d\theta}

\displaystyle A = \frac{9}{2} {\left[\frac{1}{2} \theta + \frac{1}{12} \sin{6\theta} \right]}_{-\frac{\pi}{6}}^{\frac{\pi}{6}} = \frac{9}{2} \left[\left(\frac{\pi}{12} + \frac{1}{12} \sin{\frac{6\pi}{6}} \right) - \left(-\frac{\pi}{12} - \frac{1}{12} \sin{\frac{6\pi}{6}} \right) \right]

\displaystyle A = \frac{9}{2} \left[ \left(\frac{\pi}{12} + \frac{1}{12} \sin{\pi} \right) + \left(\frac{\pi}{12} + \frac{1}{12} \sin{\pi} \right) \right]

\displaystyle A = \frac{9}{2} \left(\frac{2 \pi}{12} + \frac{2}{12} \sin{\pi} \right) = \left(\frac{18 \pi}{24} + \frac{18}{24} \sin{\pi} \right) = \frac{18}{24} \pi = \frac{3}{4} \pi

Por lo tanto, el área es

\displaystyle \therefore A = \frac{3}{4} \pi \ \text{u}^2

Imagen1
Figura 1. Representación gráfica del área de la región para la ecuación r=3 cos 3θ

Problema 2. Hallar el área limitada por una sola curva: región comprendida entre los lazos interior y exterior de un caracol, r = 1 - 2 \sin{\theta}

Solución. Para el lazo interior, se inicia con igualar a cero la ecuación r = 1 - 2 \sin{\theta}.

r = 1 - 2 \sin{\theta}

0 = 1 - 2 \sin{\theta}

2 \sin{\theta} = 1

\displaystyle \sin{\theta} = \frac{1}{2}

\displaystyle \theta = \arcsin{(\frac{1}{2})}

Donde los valores de θ son \displaystyle \theta = \frac{\pi}{6} y \displaystyle \theta= \pi - \frac{\pi}{6} = \frac{5}{6} \pi.

Imagen2
Figura 2. Analizando los límites para el lazo interior (LI) por medio de la gráfica en base a la ecuación r = 1 – 2 sen θ.

Tomando los valores de los ángulos obtenidos anteriormente, el límite inferior es \displaystyle \alpha = \frac{\pi}{6} y el límite superior es \displaystyle \beta = \frac{5\pi}{6}.

\displaystyle {A}_{LI} = \frac{1}{2} \int _{\alpha}^{\beta}{r^2 \ d\theta}

\displaystyle {A}_{LI} = \frac{1}{2} \int _{\frac{\pi}{6}}^{\frac{5\pi}{6}}{{(1 - 2\sin{\theta})}^{2} d\theta} = \frac{1}{2} \int _{\frac{\pi}{6}}^{\frac{5\pi}{6}}{(1 - 4\sin{\theta} + 4{\sin}^{2}{\theta}) \ d\theta}

Recordando que, la identidad trigonométrica  \displaystyle {\sin}^{2}{\theta} = \frac{1}{2} - \frac{1}{2} {\cos}^{2}{\theta}, entonces

\displaystyle {A}_{LI} = \frac{1}{2} \int _{\frac{\pi}{6}}^{\frac{5\pi}{6}}{(1 - 4\sin{\theta} + 4{\sin}^{2}{\theta}) \ d\theta}

\displaystyle {A}_{LI} = \frac{1}{2} \int _{\frac{\pi}{6}}^{\frac{5\pi}{6}}{\left[1 - 4\sin{\theta} + 4 \left(\frac{1}{2} - \frac{1}{2}\cos{2\theta} \right) \right] \ d\theta}

\displaystyle {A}_{LI} = \frac{1}{2} \int _{\frac{\pi}{6}}^{\frac{5\pi}{6}}{ \left(1 - 4\sin{\theta} + 2 - 2\cos{2\theta} \right) \ d\theta}

\displaystyle {A}_{LI} = \frac{1}{2} \int _{\frac{\pi}{6}}^{\frac{5\pi}{6}}{\left(3 - 4\sin{\theta} - 2\cos{2\theta} \right)} \ d\theta

\displaystyle {A}_{LI} = \frac{1}{2} \left[3\theta + 4\cos{\theta} - \sin{2\theta} \right]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}

\displaystyle {A}_{LI} = \frac{1}{2} \left\{ \left[3 \left( \frac{5\pi}{6} \right) + 4 \cos{\frac{5\pi}{6}} - \sin{2 \left(\frac{5\pi}{6} \right)} \right] - \left[3 \left( \frac{\pi}{6} \right) + 4 \cos{\frac{\pi}{6}} - \sin{2 \left(\frac{\pi}{6} \right)} \right] \right\}

\displaystyle {A}_{LI} = \frac{1}{2} \left[ \left(\frac{15\pi}{6} + 4 \cos{\frac{5\pi}{6}} - \sin{\frac{5\pi}{3}} \right) - \left(\frac{3\pi}{6} + 4 \cos{\frac{\pi}{6}} - \sin{\frac{\pi}{3}} \right) \right]

\displaystyle {A}_{LI} = \frac{1}{2} \left(\frac{15\pi}{6} - \frac{4\sqrt{3}}{2} + \frac{\sqrt{3}}{2} - \frac{3\pi}{6} - \frac{4\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right)

\displaystyle {A}_{LI} = \frac{1}{2} \left(\frac{12\pi}{6} - \frac{8\sqrt{3}}{2} + \frac{2\sqrt{3}}{2} \right)

\displaystyle {A}_{LI} = \frac{1}{2} \left(\frac{12\pi}{6} - \frac{6\sqrt{3}}{2} \right) = \frac{1}{2} \left(2\pi - 3\sqrt{3} \right)

Por lo tanto, el área para el lazo interior es

\displaystyle {A}_{LI} = \frac{1}{2} (2\pi - 3\sqrt{3}) \ \text{u}^2

Para el lazo exterior, se toman en cuenta los siguientes límites:

\displaystyle \theta = \pi - \frac{1}{6} \pi = \frac{5}{6} \pi y \displaystyle \theta = \pi + \frac{5}{6} \pi = \frac{13}{6} \pi

donde el límite inferior es \displaystyle \alpha = \frac{5}{6}\pi = \frac{5\pi}{6} y el límite superior es \displaystyle \beta = \frac{13}{6}\pi = \frac{13\pi}{6}.

Imagen3
Figura 3. Analizando los límites para el lazo exterior (LE) por medio de la gráfica en base a la ecuación r = 1 – 2 sen θ.

Ahora

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\alpha}^{\beta}{r^2 d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\frac{5\pi}{6}}^{\frac{13\pi}{6}}{{(1 - 2\sin{\theta})}^{2} d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\frac{5\pi}{6}}^{\frac{13\pi}{6}}{(1 - 4\sin{\theta} + 4{\sin}^{2}{\theta}) d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\frac{5\pi}{6}}^{\frac{13\pi}{6}}{[1 - 4\sin{\theta} + 4(\frac{1}{2} - \frac{1}{2} \cos{2\theta})] d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\frac{5\pi}{6}}^{\frac{13\pi}{6}}{(1 - 4\sin{\theta} + \frac{4}{2} - \frac{4}{2} \cos{2\theta}) d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\frac{5\pi}{6}}^{\frac{13\pi}{6}}{(1 - 4\sin{\theta} + 2 - 2\cos{2\theta}) d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \int _{\frac{5\pi}{6}}^{\frac{13\pi}{6}}{(3 - 4\sin{\theta} - 2\cos{2\theta}) d\theta}

\displaystyle {A}_{LE} = \frac{1}{2} \left[3\theta + 4\cos{\theta} - \sin{2\theta}\right]_{\frac{5\pi}{6}}^{\frac{13\pi}{6}}

\displaystyle {A}_{LE} = \frac{1}{2} \left\{ \left[(3) \left(\frac{13\pi}{6} \right) + 4\cos{\frac{13\pi}{6}} - \sin{2 \left(\frac{13\pi}{6} \right)} \right] - \left[ (3) \left(\frac{5\pi}{6} \right) + 4\cos{\frac{5\pi}{6}} - \sin{2 \left(\frac{5\pi}{6} \right)} \right] \right\}

\displaystyle {A}_{LE} = \frac{1}{2} \left\{ \left[\frac{39\pi}{6} + 4 \left(\frac{\sqrt{3}}{2} \right) - \frac{\sqrt{3}}{2} \right] - \left[\frac{15\pi}{6} - 4 \left(\frac{\sqrt{3}}{2} \right) - \left(-\frac{\sqrt{3}}{2} \right) \right] \right\}

\displaystyle {A}_{LE} = \frac{1}{2} \left(\frac{39\pi}{6} + \frac{4\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - \frac{15\pi}{6} + \frac{4\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right)

\displaystyle {A}_{LE} = \frac{1}{2} \left(\frac{24\pi}{6} + \frac{6\sqrt{3}}{2} \right) = \frac{1}{2} (4\pi + 3\sqrt{3})

Por lo que, el área exterior es

\displaystyle {A}_{LE} = \frac{1}{2} (4\pi + 3\sqrt{3}) \ \text{u}^2

Para obtener el área total, se lleva a cabo una diferencia de áreas, entre el área del lazo exterior y el área del lazo interior.

A = {A}_{LE} - {A}_{LI}

\displaystyle A = \frac{1}{2} (4\pi + 3\sqrt{3}) - \frac{1}{2} (2\pi - 3\sqrt{3})

\displaystyle A = \frac{1}{2} [(4\pi + 3\sqrt{3}) - (2\pi - 3\sqrt{3})]

\displaystyle A = \frac{1}{2} (4\pi + 3\sqrt{3} - 2\pi + 3\sqrt{3})

\displaystyle A = \frac{1}{2} (2\pi + 6\sqrt{3}) = 3\pi + 3\sqrt{3}

Por lo tanto, el área calculada es

\displaystyle \therefore A = 3\pi + 3\sqrt{3} \ \text{u}^2 \approx 8.3378 \ \text{u}^2

Problemas resueltos. Área entre dos curvas.

Problema 3. Hallar el área de la región entre dos curvas: r = -6 \cos{\theta} y r = 2 - 2\cos{\theta}.

Solución.

Imagen4
Figura 4. Representación gráfica de la ecuación r = -6 \cos{\theta}.
Imagen5
Figura 5. Representación gráfica de la ecuación r = 2 - 2\cos{\theta}.
Imagen6
Figura 6. Representación gráfica de las ecuaciones r = - 6\cos{\theta} y r = 2 - 2\cos{\theta}.

Utilizando la primera ecuación e igualándola con la segunda ecuación, se puede obtener los límites inferior y superior.

r = -6\cos{\theta}

2 - 2\cos{\theta} = -6\cos{\theta}

2 - 2\cos{\theta} + 6\cos{\theta} = 0

2 + 4\cos{\theta} = 0

\displaystyle \cos{\theta} = -\frac{1}{2}

\displaystyle \theta = \arccos{(-\frac{1}{2})} = \frac{2}{3} = \frac{2\pi}{3}

Imagen7
Figura 7. Analizando los límites en base a las ecuaciones r = - 6\cos{\theta} y r = 2 - 2\cos{\theta}.
Imagen8
Figura 8. Representación de la primera región.
Imagen9
Figura 9. Representación de la segunda región.

Ahora

\displaystyle A = \frac{1}{2} \int _{\alpha}^{\beta}{r^2 d\theta} = \frac{1}{2} \left[2\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{{(-6 \cos{\theta})}^{2} d\theta} + 2\int _{\frac{2\pi}{3}}^{\pi}{{(2 - 2 \cos{\theta})}^{2} d\theta}\right]

\displaystyle A = \frac{1}{2} (2) \int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{{(-6 \cos{\theta})}^{2} d\theta} + \frac{1}{2} (2) \int _{\frac{2\pi}{3}}^{\pi}{{(2 - 2 \cos{\theta})}^{2} d\theta}

\displaystyle A = \int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{{(-6 \cos{\theta})}^{2} d\theta} + \int _{\frac{2\pi}{3}}^{\pi}{{(2 - 2 \cos{\theta})}^{2} d\theta}

\displaystyle A = \int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{36 {\cos}^{2}{\theta} d\theta + \int _{\frac{2\pi}{3}}^{\pi}{(4 - 8 \cos{\theta} + 4 {\cos}^{2}{\theta})} d\theta}

\displaystyle A = 36\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{{cos}^{2}{\theta} d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi} d\theta - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{{cos}^{2}{\theta} d\theta}

Recordando la siguiente identidad trigonométrica {\cos}^{2}{\theta} = \frac{1}{2} + \frac{1}{2} \cos{2\theta}, entonces, sustituyendo la primera y última integral por la ecuación equivalente

\displaystyle A = 36\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{{\cos}^{2}{\theta} d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{cos{\theta} d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{{\cos}^{2}{\theta} d\theta}

\displaystyle A = 36\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{(\frac{1}{2} + \frac{1}{2}  \cos{2\theta}) d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi} {(\frac{1}{2} + \frac{1}{2} \cos{2\theta}) d\theta}

\displaystyle A = 36\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{\frac{1}{2} (1 + \cos{2\theta}) d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{\frac{1}{2}}{(1 + \cos{2\theta}) d\theta}

\displaystyle A = \frac{36}{2} \int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{(1 + \cos{2\theta}) \ d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} \ d\theta} + \frac{4}{2} \int_{\frac{2\pi}{3}}^{\pi}{(1 + \cos{2\theta}) \ d\theta}

\displaystyle A = 18\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{(1 + cos{2\theta}) \ d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} \ d\theta} + 2\int _{\frac{2\pi}{3}}^{\pi}{(1+cos{2\theta}) \ d\theta}

\displaystyle A = 18\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{d\theta} + 18\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{\cos{2\theta} \ d\theta} + 4\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} \ d\theta} + 2\int _{\frac{2\pi}{3}}^{\pi}{d\theta} + 2\int _{\frac{2\pi}{3}}^{\pi}{\cos{2\theta} \ d\theta}

\displaystyle A = 18\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{d\theta} + 18\int _{\frac{\pi}{2}}^{\frac{2\pi}{3}}{\cos{2\theta} \ d\theta} + 6\int _{\frac{2\pi}{3}}^{\pi}{d\theta} - 8\int _{\frac{2\pi}{3}}^{\pi}{\cos{\theta} \ d\theta} + 2\int _{\frac{2\int}{3}}^{\pi}{\cos{2\theta} \ d\theta}

\displaystyle A = 18 \left[\theta \right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} + 18 \left[\frac{1}{2} \sin{2\theta} \right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} + 6\left[\theta \right]_{\frac{2\pi}{3}}^{\pi} - 8 \left[\sin{\theta} \right]_{\frac{2\pi}{3}}^{\pi} + 2 \left[\frac{1}{2} \sin{2\theta} \right]_{\frac{2\pi}{3}}^{\pi}

\displaystyle A = 18 \left[\theta \right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} + 18(\frac{1}{2}) \left[\sin{2\theta} \right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} + 6 \left[\theta \right]_{\frac{2\pi}{3}}^{\pi} - 8 \left[\sin{\theta} \right]_{\frac{2\pi}{3}}^{\pi} + 2(\frac{1}{2}) \left[\sin{2\theta} \right]_{\frac{2\pi}{3}}^{\pi}

\displaystyle A = 18 \left[\theta \right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} + 9 \left[\sin{2\theta} \right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} + 6 \left[\theta \right]_{\frac{2\pi}{3}}^{\pi} - 8 \left[\sin{\theta} \right]_{\frac{2\pi}{3}}^{\pi} + \left[\sin{2\theta} \right]_{\frac{2\pi}{3}}^{\pi}

\displaystyle A = 18 \left(\frac{2\pi}{3} - \frac{\pi}{2} \right) + 9 \left[\sin{2 \left(\frac{2\pi}{3} \right)} - \sin{2 \left(\frac{\pi}{2} \right)} \right] + 6 \left(\pi - \frac{2\pi}{3} \right) - 8 \left(\sin{\pi} - \sin{\frac{2\pi}{3}} \right) + \left[\sin{2\pi} - \sin{2 \left(\frac{2\pi}{3} \right)} \right]

\displaystyle A = 18 \left(\frac{\pi}{6} \right) + 9 \left(\sin{\frac{4\pi}{3}} - \sin{\pi} \right) + 6 \left(\frac{\pi}{3} \right) - 8 \left(\sin{\pi} - \sin{\frac{2\pi}{3}} \right) + \left(\sin{2\pi} - \sin{\frac{4\pi}{3}} \right)

\displaystyle A = 3\pi + 9 \left(-\frac{\sqrt{3}}{2} - 0 \right) + 2\pi - 8 \left(0 - \frac{\sqrt{3}}{2} \right) + 0 - \left(-\frac{\sqrt{3}}{2} \right)

\displaystyle A = 3\pi + 9 \left(-\frac{\sqrt{3}}{2} \right) + 2\pi - 8 \left(-\frac{\sqrt{3}}{2} \right) + 0 + \frac{\sqrt{3}}{2}

\displaystyle A = 3\pi - \frac{9\sqrt{3}}{2} + 2\pi + \frac{8\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 5\pi

Finalmente, el área buscada es

\therefore A = 5\pi \ \text{u}^2 \approx 15.708 \ \text{u}^2


Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.