Sea f(t) una función de t definida para todo t>0. La transformada de Laplace de f(t), se denota como \mathcal{L}[f(t)] y está definida como

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \, f(t) , dt}

\displaystyle F(s) = \int_{0}^{\infty}{e^{-st} \, f(t) , dt}

La transforma de Laplace existe cuando la integral converge para algún valor de s; de otra manera, no existe.

Se indicará con minúscula una función de t como f(t), g(t), … , mientras que la transformada de Laplace de esa función se representará una letra mayúscula como F(s), G(s), … .

A continuación, se presenta un formulario de funciones básicas con sus respectivas transformadas.

funciones-elementales-transformada-de-laplace

Demostraciones

Demostrando que \displaystyle \mathcal{L}[1] = \frac{1}{s}.

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \ f(t) \ dt}

\displaystyle \mathcal{L}[1] = \int_{0}^{\infty}{e^{-st} \ (1) \ dt}

\displaystyle \mathcal{L}[1] = \int_{0}^{\infty}{e^{-st} \ dt}

\displaystyle \mathcal{L}[1] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-st} \ dt}}

\displaystyle \mathcal{L}[1] = \lim_{m \rightarrow \infty}{\left. \left[-\frac{1}{s} e^{-st} \right|_{0}^{m} \right]}

\displaystyle \mathcal{L}[1] = \lim_{m \rightarrow \infty}{\left[ \left(-\frac{1}{s} e^{-ms} \right) - \left(- \frac{1}{s} e^{0} \right) \right]}

\displaystyle \mathcal{L}[1] = \lim_{m \rightarrow \infty}{\left[-\frac{1}{s} e^{-ms} + \frac{1}{s} e^{0} \right]}

\displaystyle \mathcal{L}[1] = -\frac{1}{s} e^{- \infty \cdot s} + \frac{1}{s} e^{0}

\displaystyle \mathcal{L}[1] = -\frac{1}{s} e^{- \infty} + \frac{1}{s} e^{0}

\displaystyle \mathcal{L}[1] = -\frac{1}{s} (0) + \frac{1}{s} (1)

\displaystyle \therefore \mathcal{L}[1] = \frac{1}{s}

Donde s>0.

Demostrando que \displaystyle \mathcal{L}[t] = \frac{1}{s^2}.

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \ f(t) \ dt}

\displaystyle \mathcal{L}[t] = \int_{0}^{\infty}{e^{-st} \cdot t \ dt}

\displaystyle \mathcal{L}[t] = \int_{0}^{\infty}{t \ e^{-st} \ dt}

\displaystyle \mathcal{L}[t] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{t \ e^{-st} \ dt}}

\displaystyle \mathcal{L}[t] = \lim_{m \rightarrow \infty}{\left[ \left. -\frac{1}{s} te^{-st} + C \right|_{0}^{m} - \int_{0}^{m}{(-\frac{1}{s} e^{-st}) \ dt} \right]}

\displaystyle \mathcal{L}[t] = \lim_{m \rightarrow \infty}{\left[ \left. - \frac{1}{s} te^{-st} + C \right|_{0}^{m} + \frac{1}{s} \int_{0}^{m}{e^{-st} \ dt} \right]}

\displaystyle \mathcal{L}[t] = \lim_{m \rightarrow \infty}{\left[ \left. - \frac{1}{s} te^{-st} + C \right|_{0}^{m} -  \left. \frac{1}{s^2} e^{-st} + C \right|_{0}^{m} \right]}

\displaystyle \mathcal{L}[t] = \lim_{m \rightarrow \infty}{\left[ \left. - \frac{1}{s} te^{-st} - \frac{1}{s^2} e^{-st} + C \right|_{0}^{m} \right]}

\displaystyle \mathcal{L}[t] = \lim_{m \rightarrow \infty}{\left\{ \left[- \frac{1}{s} (m) e^{-s \cdot m} - \frac{1}{s^2} e^{-s \cdot m} \right] - \left[- \frac{1}{s} (0) e^{-s \cdot 0} - \frac{1}{s^2} e^{-s \cdot 0} \right] \right\}}

\displaystyle \mathcal{L}[t] = \left[- \frac{1}{s} (\infty) e^{-s \cdot \infty} - \frac{1}{s^2} e^{-s \cdot \infty} \right] - \left[- \frac{1}{s} (0) e^{-s \cdot 0} - \frac{1}{s^2} e^{-s \cdot 0} \right]

\displaystyle \mathcal{L}[t] = \left[- \frac{1}{s} (\infty) e^{-\infty} - \frac{1}{s^2} e^{-\infty} \right] - \left[-(0) - \frac{1}{s^2} e^{0} \right]

\displaystyle \mathcal{L}[t] = \left(0 \right) - \left[- \frac{1}{s^2} (1) \right]

\displaystyle \mathcal{L}[t] = 0 - \left(- \frac{1}{s^2} \right)

\displaystyle \mathcal{L}[t] = 0 + \frac{1}{s^2}

\displaystyle \therefore \mathcal{L}[t] = \frac{1}{s^2}

Donde s>0.

Demostrando que \displaystyle \mathcal{L}[e^{at}] = \frac{1}{s-a}.

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \ f(t) \ dt}

\displaystyle \mathcal{L}[e^{at}] = \int_{0}^{\infty}{e^{-st} \ e^{at} \ dt}

\displaystyle \mathcal{L}[e^{at}] = \int_{0}^{\infty}{e^{-st + at} \ dt}

\displaystyle \mathcal{L}[e^{at}] = \int_{0}^{\infty}{e^{(-s + a)t} \ dt}

\displaystyle \mathcal{L}[e^{at}] = \int_{0}^{\infty}{e^{-(s-a)t} \ dt}

\displaystyle \mathcal{L}[e^{at}] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-(s-a)t} \ dt}}

\displaystyle \mathcal{L}[e^{at}] = \lim_{m \rightarrow \infty}{\left[ \left. -\frac{1}{s-a} e^{-(s-a)t} + C \right|_{0}^{m} \right]}

\displaystyle \mathcal{L}[e^{at}] = \lim_{m \rightarrow \infty}{\left\{ \left[-\frac{1}{s-a} e^{-(s-a) \cdot m} \right] - \left[-\frac{1}{s-a} e^{-(s-a) \cdot 0} \right] \right\}}

\displaystyle \mathcal{L}[e^{at}] = \left[-\frac{1}{s-a} e^{-(s-a) \cdot \infty} \right] - \left[-\frac{1}{s-a} e^{-(s-a) \cdot 0} \right]

\displaystyle \mathcal{L}[e^{at}] = \left[-\frac{1}{s-a} e^{\infty} \right] - \left[-\frac{1}{s-a} e^{0} \right]

\displaystyle \mathcal{L}[e^{at}] = \left[-\frac{1}{s-a} (0) \right] - \left[-\frac{1}{s-a} (1) \right]

\displaystyle \mathcal{L}[e^{at}] = (0) - \left[-\frac{1}{s-a} \right]

\displaystyle \therefore \mathcal{L}[e^{at}] = \frac{1}{s-a}

Donde s>a.

Demostrando que \displaystyle \mathcal{L}[e^{-at}] = \frac{1}{s+a}.

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \ f(t) \ dt}

\displaystyle \mathcal{L}[e^{-at}] = \int_{0}^{\infty}{e^{-st} \ e^{-at} \ dt}

\displaystyle \mathcal{L}[e^{-at}] = \int_{0}^{\infty}{e^{-st - at} \ dt}

\displaystyle \mathcal{L}[e^{-at}] = \int_{0}^{\infty}{e^{(-s - a)t} \ dt}

\displaystyle \mathcal{L}[e^{-at}] = \int_{0}^{\infty}{e^{-(s+a)t} \ dt}

\displaystyle \mathcal{L}[e^{-at}] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-(s+a)t} \ dt}}

\displaystyle \mathcal{L}[e^{-at}] = \lim_{m \rightarrow \infty}{\left[ \left. -\frac{1}{s+a} e^{-(s+a)t} + C \right|_{0}^{m} \right]}

\displaystyle \mathcal{L}[e^{-at}] = \lim_{m \rightarrow \infty}{\left\{ \left[-\frac{1}{s+a} e^{-(s+a) \cdot m} \right] - \left[-\frac{1}{s+a} e^{-(s+a) \cdot 0} \right] \right\}}

\displaystyle \mathcal{L}[e^{-at}] = \left[-\frac{1}{s+a} e^{-(s+a) \cdot \infty} \right] - \left[-\frac{1}{s+a} e^{-(s+a) \cdot 0} \right]

\displaystyle \mathcal{L}[e^{-at}] = \left[-\frac{1}{s+a} e^{\infty} \right] - \left[-\frac{1}{s+a} e^{0} \right]

\displaystyle \mathcal{L}[e^{-at}] = \left[-\frac{1}{s+a} (0) \right] - \left[-\frac{1}{s+a} (1) \right]

\displaystyle \mathcal{L}[e^{-at}] = (0) - \left(-\frac{1}{s+a} \right)

\displaystyle \therefore \mathcal{L}[e^{-at}] = \frac{1}{s+a}

Donde s>a.

Demostrando que \displaystyle \mathcal{L}[\sin{at}] = \frac{a}{s^2 + a^2}.

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \ f(t) \ dt}

\displaystyle \mathcal{L}[\sin{at}] = \int_{0}^{\infty}{e^{-st} \ \sin{at} \ dt}

\displaystyle \mathcal{L}[\sin{at}] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-st} \ \sin{at} \ dt}}

Resolviendo la integral

\displaystyle \int{e^{-st} \ \sin{at} \ dt} = \left(- \frac{1}{s} e^{-st} \right)(\sin{at}) - \int{\left(-\frac{1}{s} e^{-st} \right) (a \cos{at}) \ dt}

\displaystyle \int{e^{-st} \ \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} + \frac{a}{s} \int{e^{-st} \cos{at} \ dt}

\displaystyle \int{e^{-st} \ \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} + \frac{a}{s} \left[ \left(- \frac{1}{s} e^{-st} \right) (\cos{at}) + \int{\left(- \frac{1}{s} e^{-st} \right) (a \sin{at}) \ dt} \right]

\displaystyle \int{e^{-st} \ \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} + \frac{a}{s} \left(- \frac{1}{s} e^{-st} \cos{at} - \frac{a}{s} \int{e^{-st}  \sin{at} \ dt} \right)

\displaystyle \int{e^{-st} \ \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} - \frac{a}{s^2} e^{-st} \cos{at} - \frac{a}{s^2} \int{e^{-st}  \sin{at} \ dt}

\displaystyle \int{e^{-st} \ \sin{at} \ dt} +  \frac{a}{s^2} \int{e^{-st}  \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} - \frac{a^2}{s^2} e^{-st} \cos{at}

\displaystyle \left(1 +  \frac{a^2}{s^2} \right) \int{e^{-st}  \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} - \frac{a}{s^2} e^{-st} \cos{at}

\displaystyle \left(\frac{s^2+a^2}{s^2} \right) \int{e^{-st}  \sin{at} \ dt} = - \frac{1}{s} e^{-st} \sin{at} - \frac{a}{s^2} e^{-st} \cos{at}

\displaystyle \int{e^{-st}  \sin{at} \ dt} = \frac{- \frac{1}{s} e^{-st} \sin{at} - \frac{a}{s^2} e^{-st} \cos{at} + C}{\frac{s^2+a^2}{s^2}}

\displaystyle \int{e^{-st}  \sin{at} \ dt} = - \frac{s^2}{s^2+a^2} \cdot \frac{1}{s} e^{-st} \sin{at} -  \frac{s^2}{s^2+a^2} \cdot \frac{a}{s^2} e^{-st} \cos{at} + C

\displaystyle \int{e^{-st}  \sin{at} \ dt} = - \frac{s}{s^2+a^2} e^{-st} \sin{at} -  \frac{a}{s^2+a^2} e^{-st} \cos{at} + C

Regresando

\displaystyle \mathcal{L}[\cos{at}] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-st} \ \cos{at} \ dt}}

\displaystyle \mathcal{L}[\sin{at}] = \lim_{m \rightarrow \infty}{\left[ \left.  - \frac{s}{s^2+a^2} e^{-st} \sin{at} -  \frac{a}{s^2+a^2} e^{-st} \cos{at} + C \right|_0^m \right]}

\displaystyle \mathcal{L}[\cos{at}] = \lim_{m \rightarrow \infty}{\left\{\left[ - \frac{s}{s^2+a^2} e^{-s \cdot m} \sin{a \cdot m} -  \frac{a}{s^2+a^2} e^{-s \cdot m} \cos{a \cdot m} \right] - \left[- \frac{s}{s^2+a^2} e^{-s \cdot 0} \sin{a \cdot 0} -  \frac{a}{s^2+a^2} e^{-s \cdot 0} \cos{a \cdot 0} \right] \right\}}

\displaystyle \mathcal{L}[\cos{at}] = \left[ - \frac{s}{s^2+a^2} e^{-s \cdot \infty} \sin{a \cdot \infty} -  \frac{a}{s^2+a^2} e^{-s \cdot \infty} \cos{a \cdot \infty} \right] - \left[- \frac{s}{s^2+a^2} e^{-s \cdot 0} \sin{a \cdot 0} -  \frac{a}{s^2+a^2} e^{-s \cdot 0} \cos{a \cdot 0} \right]

\displaystyle \mathcal{L}[\sin{at}] = \left[ - \frac{s}{s^2+a^2} e^{-\infty} \sin{\infty} -  \frac{a}{s^2+a^2} e^{-\infty} \cos{\infty} \right] - \left[- \frac{s}{s^2+a^2} e^{0} \sin{0} -  \frac{a}{s^2+a^2} e^{0} \cos{0} \right]

\displaystyle \mathcal{L}[\sin{at}] = \left[ - \frac{s}{s^2+a^2} (0)(\infty) -  \frac{a}{s^2+a^2} (0)(\infty) \right] - \left[- \frac{s}{s^2+a^2} (1)(0) - \frac{a}{s^2+a^2} (1)(1) \right]

\displaystyle \mathcal{L}[\sin{at}] = (-0 - 0) - \left(-0 - \frac{a}{s^2+a^2} \right)

\displaystyle \therefore \mathcal{L}[\sin{at}] = \frac{a}{s^2+a^2}

Donde s>0.

Demostrando que \displaystyle \mathcal{L}[\cos{at}] = \frac{s}{s^2 + a^2}.

\displaystyle \mathcal{L}[f(t)] = \int_{0}^{\infty}{e^{-st} \ f(t) \ dt}

\displaystyle \mathcal{L}[\cos{at}] = \int_{0}^{\infty}{e^{-st} \ \cos{at} \ dt}

\displaystyle \mathcal{L}[\cos{at}] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-st} \ \cos{at} \ dt}}

Resolviendo la integral

\displaystyle \int{e^{-st} \ \cos{at} \ dt} = \left(- \frac{1}{s} e^{-st} \right)(\cos{at}) - \int{\left(-\frac{1}{s} e^{-st} \right) (-a \sin{at}) \ dt}

\displaystyle \int{e^{-st} \ \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} - \frac{a}{s} \int{e^{-st} \sin{at} \ dt}

\displaystyle \int{e^{-st} \ \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} - \frac{a}{s} \left[ \left(- \frac{1}{s} e^{-st} \right) (\sin{at}) - \int{\left(- \frac{1}{s} e^{-st} \right) (a \cos{at}) \ dt} \right]

\displaystyle \int{e^{-st} \ \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} - \frac{a}{s} \left(- \frac{1}{s} e^{-st} \sin{at} + \frac{a}{s} \int{e^{-st}  \cos{at} \ dt} \right)

\displaystyle \int{e^{-st} \ \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} + \frac{a}{s^2} e^{-st} \sin{at} - \frac{a}{s^2} \int{e^{-st} \cos{at} \ dt}

\displaystyle \int{e^{-st} \ \cos{at} \ dt} + \frac{a}{s^2} \int{e^{-st}  \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} + \frac{a^2}{s^2} e^{-st} \sin{at}

\displaystyle \left(1 +  \frac{a^2}{s^2} \right) \int{e^{-st}  \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} + \frac{a}{s^2} e^{-st} \sin{at}

\displaystyle \left(\frac{s^2+a^2}{s^2} \right) \int{e^{-st}  \cos{at} \ dt} = - \frac{1}{s} e^{-st} \cos{at} + \frac{a}{s^2} e^{-st} \sin{at}

\displaystyle \int{e^{-st}  \cos{at} \ dt} = \frac{- \frac{1}{s} e^{-st} \cos{at} + \frac{a}{s^2} e^{-st} \sin{at} + C}{\frac{s^2+a^2}{s^2}}

\displaystyle \int{e^{-st}  \cos{at} \ dt} = - \frac{s^2}{s^2+a^2} \cdot \frac{1}{s} e^{-st} \cos{at} +  \frac{s^2}{s^2+a^2} \cdot \frac{a}{s^2} e^{-st} \sin{at} + C

\displaystyle \int{e^{-st}  \cos{at} \ dt} = - \frac{s}{s^2+a^2} e^{-st} \cos{at} + \frac{a}{s^2+a^2} e^{-st} \sin{at} + C

Regresando

\displaystyle \mathcal{L}[\cos{at}] = \lim_{m \rightarrow \infty}{\int_{0}^{m}{e^{-st} \ \cos{at} \ dt}}

\displaystyle \mathcal{L}[\cos{at}] = \lim_{m \rightarrow \infty}{\left[ \left. - \frac{s}{s^2+a^2} e^{-st} \cos{at} + \frac{a}{s^2+a^2} e^{-st} \sin{at} \right|_0^m \right]}

\displaystyle \mathcal{L}[\cos{at}] = \lim_{m \rightarrow \infty}{\left\{\left[ - \frac{s}{s^2+a^2} e^{-s \cdot m} \cos{a \cdot m} + \frac{a}{s^2+a^2} e^{-s \cdot m} \sin{a \cdot m} \right] - \left[- \frac{s}{s^2+a^2} e^{-s \cdot 0} \cos{a \cdot 0} + \frac{a}{s^2+a^2} e^{-s \cdot 0} \sin{a \cdot 0} \right] \right\}}

\displaystyle \mathcal{L}[\cos{at}] = \left[ - \frac{s}{s^2+a^2} e^{-s \cdot \infty} \cos{a \cdot \infty} + \frac{a}{s^2+a^2} e^{-s \cdot \infty} \sin{a \cdot \infty} \right] - \left[- \frac{s}{s^2+a^2} e^{-s \cdot 0} \cos{a \cdot 0} +  \frac{a}{s^2+a^2} e^{-s \cdot 0} \sin{a \cdot 0} \right]

\displaystyle \mathcal{L}[\cos{at}] = \left[ - \frac{s}{s^2+a^2} e^{-\infty} \cos{\infty} + \frac{a}{s^2+a^2} e^{-\infty} \sin{\infty} \right] - \left[- \frac{s}{s^2+a^2} e^{0} \cos{0} - \frac{a}{s^2+a^2} e^{0} \sin{0} \right]

\displaystyle \mathcal{L}[\cos{at}] = \left[ - \frac{s}{s^2+a^2} (0)(\infty) + \frac{a}{s^2+a^2} (0)(\infty) \right] - \left[- \frac{s}{s^2+a^2} (1)(1) + \frac{a}{s^2+a^2} (1)(0) \right]

\displaystyle \mathcal{L}[\cos{at}] = (-0 - 0) - \left(- \frac{s}{s^2+a^2} + 0\right)

\displaystyle \therefore \mathcal{L}[\cos{at}] = \frac{s}{s^2+a^2}

Donde s>0.

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.