A continuación, se muestra un bloque de problemas resueltos que ayudan a determinar la serie de Fourier de una función f(t).

Problemas resueltos

Problema 1. Encontrar la serie de Fourier para la función f(t) definida por

\displaystyle f(t) =\left\{ \begin{matrix} -1 \, , \quad  \quad -\frac{T}{2} < t < 0 \\ 1, \, \quad \quad \quad 0 < t < \frac{T}{2} \end{matrix} \right.

y f(t + T) = f(t).

Solución. De la serie de Fourier

\displaystyle f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

Se va a determinar el valor de a_0. Entonces

\displaystyle a_0 = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \, dt}

\displaystyle a_0 = \frac{2}{T} \int_{-T/2}^{0}{(-1) \, dt} + \frac{2}{T} \int_{0}^{T/2}{(1) \, dt}

\displaystyle a_0 = - \frac{2}{T} \int_{-T/2}^{0}{dt} + \frac{2}{T} \int_{0}^{T/2}{dt} = -\frac{2}{T} [t + C]_{-T/2}^{0} + \frac{2}{T} [t + C]_{0}^{T/2}

\displaystyle a_0 = -\frac{2}{T} \left[0 - (-\frac{T}{2}) \right] + \frac{2}{T} \left(\frac{T}{2} - 0\right) = -\frac{2}{T} \left(\frac{T}{2} \right) + \frac{2}{T} \left(\frac{T}{2}\right)

a_0 = - 1 + 1

\displaystyle a_0 = 0

Después, se calcula el valor de a_n

\displaystyle a_n = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \cdot \cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{2}{T} \int_{-T/2}^{0}{(-1) \cdot \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{(1) \cdot \cos{n \omega_0 t} \, dt}

\displaystyle a_n = - \frac{2}{T} \int_{-T/2}^{0}{\cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\cos{n \omega_0 t} \, dt}

\displaystyle a_n = - \frac{2}{T} \left[\frac{1}{n \omega_0} \sin{n \omega_0 t} + C \right]_{-T/2}^{0} + \frac{2}{T} \left[\frac{1}{n \omega_0} \sin{n \omega_0 t} + C \right]_{0}^{T/2}

\displaystyle a_n = - \frac{2}{T} \left[\frac{1}{n \omega_0} \sin{(n \omega_0 \cdot 0)} - \frac{1}{n \omega_0} \sin{(n \omega_0 \cdot (-\frac{T}{2}))} \right] + \frac{2}{T} \left[\frac{1}{n \omega_0} \sin{(n \omega_0 (\frac{T}{2}))} - \frac{1}{n \omega_0} \sin{(n \omega_0 \cdot 0)} \right]

\displaystyle a_n = - \frac{2}{T} \left[- \frac{1}{n \omega_0} \sin{(n \omega_0 \cdot (-\frac{T}{2}))} \right] + \frac{2}{T} \left[\frac{1}{n \omega_0} \sin{(n \omega_0 (\frac{T}{2}))} \right]

Sabiendo que \displaystyle \omega_0 = \frac{2\pi}{T}

\displaystyle a_n = - \frac{2}{T} \left[- \frac{1}{n \cdot \frac{2\pi}{T}} \sin{(n \frac{2\pi}{T} \cdot (-\frac{T}{2}))} \right] + \frac{2}{T} \left[\frac{1}{n \cdot \frac{2\pi}{T}} \sin{(n \frac{2\pi}{T} (\frac{T}{2}))} \right]

\displaystyle a_n = - \frac{2}{T} \left[- \frac{T}{2n\pi} \sin{(-n \pi)} \right] + \frac{2}{T} \left[\frac{T}{2n \pi} \sin{(n \pi)} \right]

\displaystyle = - \frac{1}{n \pi} \sin{(n \pi)} + \frac{1}{n \pi} \sin{(n \pi)} = 0

a_n = 0

Luego, se determina el valor de b_n

\displaystyle b_n = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \cdot \sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{2}{T} \int_{-T/2}^{0}{(-1) \cdot \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{(1) \cdot \sin{n \omega_0 t} \, dt}

\displaystyle b_n = - \frac{2}{T} \int_{-T/2}^{0}{\sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\sin{n \omega_0 t} \, dt}

\displaystyle b_n = - \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{n \omega_0 t} \right]_{-T/2}^{0} + \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{n \omega_0 t} \right]_{0}^{T/2}

\displaystyle b_n = - \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{(n \omega_0 (0))} - \left(-\frac{1}{n \omega_0} \cos{(n \omega_0 (-\frac{T}{2}))} \right) \right] + \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{(n \omega_0 (\frac{T}{2}))} - \left(-\frac{1}{n \omega_0} \cos{(n \omega_0 (0))}\right) \right]

\displaystyle b_n = - \frac{2}{T} \left[-\frac{1}{n \omega_0} (1) - \left(-\frac{1}{n \omega_0} \cos{(n \frac{2\pi}{T} (-\frac{T}{2}))} \right) \right] + \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{(n \frac{2\pi}{T} (\frac{T}{2}))} - \left(-\frac{1}{n \omega_0 } (1) \right) \right]

\displaystyle b_n = - \frac{2}{T} \left[-\frac{1}{n \omega_0}- \left(-\frac{1}{n \omega_0} \cos{(-n \pi)} \right) \right] + \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{(n \pi)} - \left(-\frac{1}{n \omega_0 } \right) \right]

\displaystyle b_n = - \frac{2}{T} \left[-\frac{1}{n \omega_0} + \frac{1}{n \omega_0} \cos{(-n \pi)} \right] + \frac{2}{T} \left[-\frac{1}{n \omega_0} \cos{(n \pi)} + \frac{1}{n \omega_0 } \right]

\displaystyle b_n = - \frac{2}{T} \left(-\frac{1}{n \omega_0} + \frac{1}{n \omega_0} \cos{n \pi} \right) + \frac{2}{T} \left(-\frac{1}{n \omega_0} \cos{n \pi} + \frac{1}{n \omega_0 } \right)

\displaystyle b_n = - \frac{2}{T} \left(-\frac{1}{n \cdot \frac{2\pi}{T}} + \frac{1}{n \cdot \frac{2\pi}{T}} \cos{n \pi} \right) + \frac{2}{T} \left(-\frac{1}{n \cdot \frac{2\pi}{T}} \cos{n \pi} + \frac{1}{n \cdot \frac{2\pi}{T}} \right)

\displaystyle b_n = - \frac{2}{T} \left(-\frac{T}{2 \pi n} + \frac{T}{2\pi n} \cos{n \pi} \right) + \frac{2}{T} \left(-\frac{T}{2\pi n} \cos{n \pi} + \frac{T}{2 \pi n} \right)

\displaystyle b_n = \frac{1}{\pi n} - \frac{1}{\pi n} \cos{n \pi} - \frac{1}{\pi n} \cos{n \pi} + \frac{1}{\pi n} = \frac{2}{\pi n} - \frac{2}{\pi n} \cos{n \pi}

Si n = 1, 3, 5, 7, \cdots

\displaystyle \frac{2}{\pi n} - \frac{2}{\pi n} \cos{n \pi} = \frac{2}{\pi n} - \frac{2}{\pi n} (-1) = \frac{2}{\pi n} + \frac{2}{\pi n} = \frac{4}{\pi n}

Si n = 2, 4, 6, 8, \cdots

\displaystyle \frac{2}{\pi n} - \frac{2}{\pi n} \cos{n \pi} = \frac{2}{\pi n} - \frac{2}{\pi n} (1) = \frac{2}{\pi n} - \frac{2}{\pi n} = 0

Entonces

\displaystyle b_n = \frac{4}{\pi n}

donde n=1, 3, 5, 7, \cdots.

Finalmente, sustituyendo los valores de cada coeficiente en la serie de Fourier

\displaystyle f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

\displaystyle f(t) = \frac{1}{2} (0) + \sum_{n=impar}^{\infty}{\left[ (0) \cos{\omega_0 t} + (\frac{4}{\pi n}) \sin{\omega_0 t} \right]}

\displaystyle \therefore f(t) = \frac{4}{\pi} \sum_{n=impar}^{\infty}{\frac{1}{n} \sin{\omega_0 t}}

Problema 2. Obtener la serie de Fourier de la siguiente figura

funcion del P2

Solución. Analizando la gráfica, en \displaystyle -\frac{T}{2} < t \le 0, f(t) es

\displaystyle f(t) - f(t_0) = \frac{f(t_1) - f(t_0)}{t_1 - t_0} (t - t_0)

\displaystyle f(t) - (-1) = \frac{(1) - (-1)}{0 - (-\frac{T}{2})} (t - (-\frac{T}{2}))

\displaystyle f(t) + 1 = \frac{1 + 1}{\frac{T}{2}} (t + \frac{T}{2})

\displaystyle f(t) + 1 = \frac{2}{\frac{T}{2}} (t + \frac{T}{2})

\displaystyle f(t) + 1 = \frac{4}{T} (t + \frac{T}{2})

\displaystyle f(t) + 1 = \frac{4}{T} t + 2

\displaystyle f(t) = \frac{4}{T} t + 1

Y en \displaystyle 0 \le t < \frac{T}{2}, f(t) es

\displaystyle f(t) - f(t_0) = \frac{f(t_1) - f(t_0)}{t_1 - t_0} (t - t_0)

\displaystyle f(t) - (1) = \frac{(-1) - (1)}{\frac{T}{2} - 0} (t - 0)

\displaystyle f(t) - 1 = \frac{-1 - 1}{\frac{T}{2}} (t)

\displaystyle f(t) - 1 = \frac{-2}{\frac{T}{2}} t

\displaystyle f(t) - 1 = -\frac{4}{T} t

\displaystyle f(t) - 1 = - \frac{4}{T} t

\displaystyle f(t) = - \frac{4}{T} t + 1

Por esa parte, f(t) esta definida de la siguiente manera

\displaystyle f(t) = \left\{ \begin{matrix} \frac{4}{T} t + 1 \, , \quad  \quad -\frac{T}{2} < t \le 0 \\ - \frac{4}{T} t + 1, \, \quad \quad 0 \le t < \frac{T}{2} \end{matrix} \right.

Depués, recordando la serie de Fourier

\displaystyle f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

Calculando a_0

\displaystyle a_0 = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \, dt}

\displaystyle a_0 = \frac{2}{T} \int_{-T/2}^{0}{\left( \frac{4}{T} t + 1 \right) \, dt} + \frac{2}{T} \int_{0}^{T/2}{\left(-\frac{4}{T} t + 1 \right) \, dt}

\displaystyle a_0 = \frac{2}{T} \cdot \frac{4}{T} \int_{-T/2}^{0}{t \, dt} + \frac{2}{T} \int_{-T/2}^{0}{dt} - \frac{2}{T} \cdot \frac{4}{T} \int_{0}^{T/2}{t \, dt} + \frac{2}{T} \int_{0}^{T/2}{dt}

\displaystyle a_0 = \frac{8}{T^2} \int_{-T/2}^{0}{t \, dt} + \frac{2}{T} \int_{-T/2}^{0}{dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \, dt} + \frac{2}{T} \int_{0}^{T/2}{dt}

\displaystyle a_0 = \frac{8}{T^2} \int_{-T/2}^{0}{t \, dt}  - \frac{8}{T^2} \int_{0}^{T/2}{t \, dt} + \frac{2}{T} \int_{-T/2}^{0}{dt} + \frac{2}{T} \int_{0}^{T/2}{dt}

\displaystyle a_0 = \frac{8}{T^2} \int_{-T/2}^{0}{t \, dt}  - \frac{8}{T^2} \int_{0}^{T/2}{t \, dt} + \frac{2}{T} \int_{-T/2}^{T/2}{dt}

\displaystyle a_0 = \frac{8}{T^2} \left[ \frac{1}{2} t^2 + C \right]_{-T/2}^{0} - \frac{8}{T^2} \left[ \frac{1}{2} t^2 + C \right]_{0}^{T/2} + \frac{2}{T} [t + C]_{-T/2}^{T/2}

\displaystyle a_0 = \frac{8}{T^2} \left[\frac{1}{2} (0)^2 - \frac{1}{2} (-\frac{T}{2})^2\right] - \frac{8}{T^2} \left[ \frac{1}{2} (\frac{T}{2})^2 - \frac{1}{2} (0)^2  \right] + \frac{2}{T} \left[\frac{T}{2} - (-\frac{T}{2}) \right]

\displaystyle a_0 = \frac{8}{T^2} \left[- \frac{1}{2} \left( \frac{T^2}{4} \right) \right] - \frac{8}{T^2} \left[ \frac{1}{2} \left(\frac{T^2}{4} \right) \right] + \frac{2}{T} \left(\frac{T}{2} + \frac{T}{2} \right)

\displaystyle a_0 = \frac{8}{T^2} \left(- \frac{T^2}{8} \right) - \frac{8}{T^2} \left(\frac{T^2}{8} \right) + \frac{2}{T} (T) = -1 -1 +2

a_0 = 0

Calculando a_n, resulta

\displaystyle a_n = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{2}{T} \int_{-T/2}^{0}{\left(\frac{4}{T} t + 1 \right) \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\left(-\frac{4}{T} t + 1 \right) \cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{2}{T} \cdot \frac{4}{T} \int_{-T/2}^{0}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{0}{\cos{n \omega_0 t} \, dt} - \frac{2}{T} \cdot \frac{4}{T} \int_{0}^{T/2}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{0}{\cos{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \cos{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{0}{\cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \cos{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{T/2}{\cos{n \omega_0 t} \, dt}

De la primera y segunda integral

\displaystyle \int{t \cos{n \omega_0 t} \, dt}

se resuelve por el método de integración por partes (donde u=t, du=dt, dv=\cos{n \omega_0 t} y v = \frac{1}{n \omega_0} \sin{n \omega_0 t}). Entonces

\displaystyle \int{t \cos{n \omega_0 t} \, dt} = (t) \left( \frac{1}{n \omega_0} \sin{n \omega_0 t} \right) - \int{\left(\frac{1}{n \omega_0} \sin{n \omega_0 t}  \right)dt}

\displaystyle \int{t \cos{n \omega_0 t} \, dt} = \frac{1}{n \omega_0} t \sin{n \omega_0 t} - \frac{1}{n \omega_0} \int{\sin{n \omega_0 t} \, dt}

\displaystyle \int{t \cos{n \omega_0 t} \, dt} = \frac{1}{n \omega_0} t \sin{n \omega_0 t} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 t} + C

Para la tercera integral, se toma la propiedad de ortogonalidad

\displaystyle \frac{2}{T} \int_{-T/2}^{T/2}{\cos{n \omega_0 t} \, dt} = 0

Regresando y remplazando la variable t por sus respectivos límites interior y superior, resulta lo siguiente

\displaystyle a_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \cos{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{T/2}{\cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{8}{T^2} \left[ \frac{1}{n \omega_0} t \sin{n \omega_0 t} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 t} + C \right]_{-T/2}^{0} - \frac{8}{T^2} \left[ \frac{1}{n \omega_0} t \sin{n \omega_0 t} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 t} + C \right]_{0}^{T/2} + \frac{2}{T}(0)

\displaystyle a_n = \frac{8}{T^2} \left[ \left(\frac{1}{n \omega_0} (0) \sin{n \omega_0 (0)} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 (0)} \right) - \left(\frac{1}{n \omega_0} (-\frac{T}{2}) \sin{(n \omega_0 (-\frac{T}{2}) )} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 (-\frac{T}{2}))} \right) \right] - \frac{8}{T^2} \left[ \left(\frac{1}{n \omega_0} (\frac{T}{2}) \sin{(n \omega_0 (\frac{T}{2}) )} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 (\frac{T}{2}))} \right) - \left(\frac{1}{n \omega_0} (0) \sin{n \omega_0 (0)} - \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 (0)} \right) \right] + 0

\displaystyle a_n = \frac{8}{T^2} \left[\frac{1}{n^2 \omega_0^2} (1) - \left(\frac{1}{n \omega_0} (-\frac{T}{2}) \sin{(n \omega_0 (-\frac{T}{2}) )} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 (-\frac{T}{2}))} \right) \right] - \frac{8}{T^2} \left[ \left(\frac{1}{n \omega_0} (\frac{T}{2}) \sin{(n \omega_0 (\frac{T}{2}) )} + \frac{1}{n^2 \omega_0^2} \cos{n \omega_0 (\frac{T}{2}))} \right) - \frac{1}{n^2 \omega_0^2} (1) \right]

\displaystyle a_n = \frac{8}{T^2} \left[\frac{1}{n^2 \omega_0^2} - \left(-\frac{T}{2n \omega_0} \sin{(n (\frac{2\pi}{T}) (-\frac{T}{2}) )} + \frac{1}{n^2 \omega_0^2} \cos{(n (\frac{2\pi}{T}) (-\frac{T}{2}))} \right) \right] - \frac{8}{T^2} \left[ \left(\frac{T}{2n \omega_0} \sin{(n (\frac{2\pi}{T}) (\frac{T}{2}) )} + \frac{1}{n^2 \omega_0^2} \cos{(n (\frac{2\pi}{T}) (\frac{T}{2}))} \right) - \frac{1}{n^2 \omega_0^2} \right]

\displaystyle a_n = \frac{8}{T^2} \left[\frac{1}{n^2 \omega_0^2} - \left(-\frac{T}{2n \omega_0} \sin{(-n \pi)} + \frac{1}{n^2 \omega_0^2} \cos{(-n\pi)} \right) \right] - \frac{8}{T^2} \left[ \left(\frac{T}{2n \omega_0} \sin{(n \pi)} + \frac{1}{n^2 \omega_0^2} \cos{n \pi)} \right) - \frac{1}{n^2 \omega_0^2} \right]

\displaystyle a_n = \frac{8}{T^2} \left[\frac{1}{n^2 \omega_0^2} + \frac{T}{2n \omega_0} \sin{(-n \pi)} - \frac{1}{n^2 \omega_0^2} \cos{(-n\pi)} \right] - \frac{8}{T^2} \left[ \frac{T}{2n \omega_0} \sin{(n \pi)} + \frac{1}{n^2 \omega_0^2} \cos{(n \pi)} - \frac{1}{n^2 \omega_0^2} \right]

\displaystyle a_n = \frac{8}{T^2} \left[\frac{T^2}{n^2 \cdot 4\pi^2} + \frac{T^2}{2n \cdot 2\pi} \sin{(-n \pi)} - \frac{T^2}{n^2 \cdot 4\pi^2} \cos{(-n\pi)} \right] - \frac{8}{T^2} \left[ \frac{T^2}{2n \cdot 2\pi} \sin{(n \pi)} + \frac{T^2}{n^2 \cdot 4\pi^2} \cos{(n \pi)} - \frac{T^2}{n^2 \cdot 4\pi^2} \right]

\displaystyle a_n = \frac{8}{T^2} \left[\frac{T^2}{4n^2\pi^2} + \frac{T^2}{4\pi n} \sin{(-n \pi)} - \frac{T^2}{4 n^2 \pi^2} \cos{(-n\pi)} \right] - \frac{8}{T^2} \left[ \frac{T^2}{4n \pi} \sin{(n \pi)} + \frac{T^2}{4 \pi^2 n^2} \cos{(n \pi)} - \frac{T^2}{4 \pi^2 n^2} \right]

\displaystyle a_n = \frac{8}{T^2} \frac{T^2}{4n^2\pi^2} + \frac{8}{T^2} \frac{T^2}{4\pi n} \sin{(-n \pi)} - \frac{8}{T^2} \cdot \frac{T^2}{4 n^2 \pi^2} \cos{(-n\pi)} - \frac{8}{T^2} \cdot \frac{T^2}{4n \pi} \sin{(n \pi)} - \frac{8}{T^2} \cdot \frac{T^2}{4 \pi^2 n^2} \cos{(n \pi)} + \frac{8}{T^2} \cdot \frac{T^2}{4 \pi^2 n^2}

\displaystyle a_n = \frac{2}{n^2\pi^2} + \frac{2}{\pi n} \sin{(-n \pi)} - \frac{2}{n^2 \pi^2} \cos{(-n\pi)} - \frac{2}{n \pi} \sin{(n \pi)} - \frac{2}{\pi^2 n^2} \cos{(n \pi)} + \frac{2}{\pi^2 n^2}

\displaystyle a_n = \frac{2}{n^2\pi^2} - \frac{2}{\pi n} \sin{(n \pi)} - \frac{2}{n^2 \pi^2} \cos{(n\pi)} - \frac{2}{n \pi} \sin{(n \pi)} - \frac{2}{\pi^2 n^2} \cos{(n \pi)} + \frac{2}{\pi^2 n^2}

\displaystyle a_n = \frac{4}{n^2\pi^2} - \frac{4}{\pi n} \sin{(n \pi)} - \frac{4}{n^2 \pi^2} \cos{(n\pi)}

Si n=1,3,5,7,\cdots

\displaystyle \frac{4}{n^2\pi^2} - \frac{4}{\pi n} \sin{(n \pi)} - \frac{4}{n^2 \pi^2} \cos{(n\pi)} = \frac{4}{n^2\pi^2} - \frac{4}{n^2 \pi^2}(-1)

\displaystyle = \frac{4}{n^2\pi^2} + \frac{4}{n^2 \pi^2} = \frac{8}{n^2 \pi^2}

Si n=2,4,6,8,\cdots

\displaystyle \frac{4}{n^2\pi^2} - \frac{4}{\pi n} \sin{(n \pi)} - \frac{4}{n^2 \pi^2} \cos{(n\pi)} = \frac{4}{n^2\pi^2} - \frac{4}{n^2 \pi^2}(1) = 0

Por tanto, cuando n es impar, el valor de a_n es

\displaystyle a_n = \frac{8}{n^2 \pi^2}

Calculando el valor de b_n

\displaystyle b_n = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{2}{T} \int_{-T/2}^{0}{\left( \frac{4}{T}t + 1\right) \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\left( -\frac{4}{T}t + 1\right)\sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{2}{T} \cdot \frac{4}{T} \int_{-T/2}^{0}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{0}{\sin{n \omega_0 t} \, dt} - \frac{2}{T} \cdot \frac{4}{T} \int_{0}^{T/2}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{0}{\sin{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \sin{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{0}{\sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{\sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \sin{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{T/2}{\sin{n \omega_0 t} \, dt}

De la primera y segunda integral

\displaystyle \int{t \sin{n \omega_0 t} \, dt}

se resolverá por el método de integración por partes (donde u=t, du=dt, dv=\sin{n \omega_0 t} y v=-\frac{1}{n \omega_0}\cos{n \omega_0 t}). Entonces

\displaystyle \int{t \sin{n \omega_0 t} \, dt} = (t)\left[-\frac{1}{n \omega_0}\cos{n \omega_0 t} \right] - \int{\left( -\frac{1}{n \omega_0}\cos{n \omega_0 t}\right) \, dt}

\displaystyle  \int{t \sin{n \omega_0 t} \, dt} = -\frac{1}{n \omega_0} t \cos{n \omega_0 t} + \frac{1}{n \omega_0} \int{\cos{n \omega_0 t} \, dt}

\displaystyle  \int{t \sin{n \omega_0 t} \, dt} = -\frac{1}{n \omega_0} t \cos{n \omega_0 t} + \frac{1}{n^2 \omega_0^2} \sin{n \omega_0 t} + C

En la tercera integral, por propiedad de ortogonalidad

\displaystyle \int_{-T/2}^{T/2}{\sin{n \omega_0 t} \, dt} = 0

Regresando y remplazando la variable t por sus respectivos límites, resulta lo siguiente

\displaystyle b_n = \frac{8}{T^2} \int_{-T/2}^{0}{t \sin{n \omega_0 t} \, dt} - \frac{8}{T^2} \int_{0}^{T/2}{t \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{-T/2}^{T/2}{\sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{8}{T^2} \left[ -\frac{1}{n \omega_0} t \cos{n \omega_0 t} + \frac{1}{n^2 \omega_0^2} \sin{n \omega_0 t} + C \right]_{-T/2}^{0} - \frac{8}{T^2} \left[ -\frac{1}{n \omega_0} t \cos{n \omega_0 t} + \frac{1}{n^2 \omega_0^2} \sin{n \omega_0 t} + C \right]_{0}^{T/2} + \frac{2}{T} (0)

\displaystyle b_n = \frac{8}{T^2} \left[ -\frac{1}{n \omega_0} (0) \cos{(n \omega_0 (0))} + \frac{1}{n^2 \omega_0^2} \sin{(n \omega_0 (0))} - \left( -\frac{1}{n \omega_0} (-\frac{T}{2}) \cos{(n \omega_0 (-\frac{T}{2}))} + \frac{1}{n^2 \omega_0^2} \sin{(n \omega_0 (-\frac{T}{2}))} \right) \right] - \frac{8}{T^2} \left[ -\frac{1}{n \omega_0} (\frac{T}{2}) \cos{(n \omega_0 (\frac{T}{2}))} + \frac{1}{n^2 \omega_0^2} \sin{(n \omega_0 (\frac{T}{2}))} - \left( -\frac{1}{n \omega_0} (0) \cos{(n \omega_0 (0))} + \frac{1}{n^2 \omega_0^2} \sin{(n \omega_0 (0))} \right) \right] + 0

\displaystyle b_n = \frac{8}{T^2} \left[- \left( \frac{T}{n \cdot 2\pi } (\frac{T}{2})\cos{(n \frac{2\pi}{T} (-\frac{T}{2}))} + \frac{T^2}{n^2 \cdot 4 \pi^2} \sin{(n (\frac{2\pi}{T}) (-\frac{T}{2}))} \right) \right] - \frac{8}{T^2} \left[ -\frac{T}{n \cdot 2\pi} (\frac{T}{2}) \cos{(n (\frac{2\pi}{T}) (\frac{T}{2}))} + \frac{T^2}{n^2 4 \pi^2} \sin{(n (\frac{2\pi}{T}) (\frac{T}{2}))} - 0 \right]

\displaystyle b_n = \frac{8}{T^2} \left[- \left( \frac{T^2}{4 \pi n} \cos{(-n \pi)} + \frac{T^2}{4 n^2 \pi^2} \sin{(-n \pi)} \right) \right] - \frac{8}{T^2} \left[ -\frac{T^2}{4n \pi} \cos{(n \pi)} + \frac{T^2}{4 n^2 \pi^2} \sin{(n \pi)} \right]

\displaystyle b_n = - \frac{8}{T^2} \frac{T^2}{4 \pi n} \cos{(-n \pi)} + \frac{8}{T^2} \frac{T^2}{4 n^2 \pi^2} \sin{(-n \pi)} + \frac{8}{T^2}\frac{T^2}{4n \pi} \cos{(n \pi)} - \frac{8}{T^2} \frac{T^2}{4 n^2 \pi^2} \sin{(n \pi)}

\displaystyle b_n = - \frac{2}{\pi n} \cos{(-n \pi)} + \frac{2}{n^2 \pi^2} \sin{(-n \pi)} + \frac{2}{n \pi} \cos{(n \pi)} - \frac{2}{n^2 \pi^2} \sin{(n \pi)}

\displaystyle b_n = - \frac{2}{\pi n} \cos{(n \pi)} - \frac{2}{n^2 \pi^2} \sin{(n \pi)} + \frac{2}{n \pi} \cos{(n \pi)} - \frac{2}{n^2 \pi^2} \sin{(n \pi)}

b_n = 0

Regresando y sustituyendo los coeficientes de Fourier en la serie de Fourier, el resultado final es

\displaystyle f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

\displaystyle f(t) = \frac{1}{2} (0) + \sum_{n=impar}^{\infty}{(\frac{8}{n^2 \pi^2} \cos{\omega_0 t} + (0) \sin{\omega_0 t})} = \sum_{n=impar}^{\infty}{(\frac{8}{n^2 \pi^2} \cos{\omega_0 t})}

\displaystyle \therefore f(t) = \frac{8}{\pi^2} \sum_{n=impar}^{\infty}{  \frac{1}{n^2}  \cos{\omega_0 t}}

Problema 3. Encontrar la serie de Fourier para la función f(t) definida por

\displaystyle f(t) = \left\{ \begin{matrix} 0 \, , \quad \quad \quad \quad -\frac{T}{2} < t < 0 \\ A \sin{\omega_0 t}, \, \quad \quad 0 < t < \frac{T}{2} \end{matrix} \right.

y f(t+T) = f(t), \omega_0 = \frac{2\pi}{T}.

funcion del P3 A sen w0 t

Solución. Recordando la serie de Fourier

\displaystyle f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

Se calcula el coeficiente a_0

\displaystyle a_0 = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \, dt}

\displaystyle a_0 = \frac{2}{T} \int_{-T/2}^{0}{0 \, dt} + \frac{2}{T} \int_{0}^{T/2}{A \sin{\omega_0 t} \, dt}

\displaystyle a_0 = A \cdot \frac{2}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \, dt} = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \, dt}

\displaystyle a_0 = \left[- \frac{2A}{T \omega_0} \cos{\omega_0 t} \right]_{0}^{T/2} = \left[- \frac{2A}{T \omega_0} \cos{(\omega_0 \cdot \frac{T}{2})} \right] - \left[- \frac{2A}{T \omega_0} \cos{(\omega_0 \cdot 0)} \right]

\displaystyle a_0 = \left[- \frac{2A}{T \cdot \frac{2\pi}{T}} \cos{(\frac{2\pi}{T} \cdot \frac{T}{2})} \right] - \left[- \frac{2A}{T \cdot \frac{2\pi}{T}} \cos{(0)} \right]

\displaystyle a_0 = \left[- \frac{A}{\pi} \cos{\pi} \right] - \left[- \frac{A}{\pi} \cos{0} \right] = \left[- \frac{2A}{\pi} (-1) \right] - \left[- \frac{2A}{\pi} (1) \right]

\displaystyle a_0 = \left(\frac{A}{\pi} \right) - \left(- \frac{A}{\pi} \right) = \frac{A}{\pi} + \frac{A}{\pi} = \frac{2A}{\pi}

\displaystyle a_0 = \frac{2A}{\pi}

Calculando a_n, resulta

\displaystyle a_n = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{2}{T} \int_{-T/2}^{0}{0 \cdot \cos{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{A \sin{\omega_0 t} \cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \cos{n \omega_0 t} \, dt}

Si n=1, el integrando tiene la siguiente forma

\displaystyle a_1 = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \cos{\omega_0 t} \, dt}

\displaystyle a_1 = \frac{2A}{T} \left[ \frac{1}{\omega_0} \sin^{2}{\omega_0 t} \right]_{0}^{T/2} = \frac{2A}{T}\left\{ \left[ \frac{1}{\omega_0} \sin^{2}{\omega_0 (\frac{T}{2})} \right] - \left[ \frac{1}{\omega_0} \sin^{2}{\omega_0 (0)} \right] \right\}

\displaystyle a_1 = \frac{2A}{T}\left\{ \left[ \frac{1}{\frac{2\pi}{T}} \sin^{2}{(\frac{2\pi}{T}) (\frac{T}{2})} \right] - 0 \right\} = \frac{2A}{T}\left( \frac{T}{2\pi} \sin^{2}{\pi} \right) = 0

Si n=2, 3, 4, \cdots, el integrando tiene la siguiente forma

\displaystyle a_n = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \cos{n \omega_0 t} \, dt}

Esta integral se resuelve por integración de productos de funciones seno y coseno con diferentes argumentos en la misma variable. Se observa que esta integral de la forma \displaystyle \int{\sin{mu} \cos{nu} \, du}, donde m=\omega_0 y n=\omega_0 n, entonces

\displaystyle \int{\sin{\omega_0 t} \cos{n \omega_0 t} \, dt} = -\frac{1}{2(\omega_0 + n \omega_0)} \cos{(\omega_0 + n\omega_0)t} - \frac{1}{2(\omega_0 + n \omega_0 )}\cos{(\omega_0 - n \omega_0)t}

\displaystyle = -\frac{1}{2\omega_0(1 + n)} \cos{\omega_0 (1 + n)t} - \frac{1}{2\omega_0 (1 + n)} \cos{\omega_0(1 - n)t} + C

Remplazando la variable «t» por sus respectivos límites, resulta lo siguiente

\displaystyle a_n = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \cos{n \omega_0 t} \, dt}

\displaystyle a_n = \frac{2A}{T} \left\{\left[ -\frac{1}{2\omega_0(1 + n)} \cos{\omega_0 (1 + n)t} - \frac{1}{2\omega_0 (1 - n)} \cos{\omega_0(1 - n)t} \right]_{0}^{T/2} \right\}

\displaystyle a_n = \frac{2A}{T} \left\{ \left[ -\frac{1}{2\omega_0(1 + n)} \cos{\omega_0 (1 + n)(\frac{T}{2})} - \frac{1}{2\omega_0 (1 - n)} \cos{\omega_0(1 - n)(\frac{T}{2})} \right] - \left[ -\frac{1}{2\omega_0(1 + n)} \cos{\omega_0 (1 + n)(0)} - \frac{1}{2\omega_0 (1 - n)} \cos{\omega_0(1 - n)(0)} \right] \right\}

\displaystyle a_n = \frac{2A}{T}\left\{ \left[ -\frac{1}{2(\frac{2\pi}{T})(1 + n)} \cos{(\frac{2\pi}{T}) (1 + n)(\frac{T}{2})} - \frac{1}{2 (\frac{2\pi}{T}) (1 - n)} \cos{(\frac{2\pi}{T})(1 - n)(\frac{T}{2})} \right] - \left[ -\frac{1}{2 (\frac{2\pi}{T}) (1 + n)} \cos{0} - \frac{1}{2 (\frac{2\pi}{T})(1 - n)} \cos{0} \right] \right\}

\displaystyle a_n = \frac{2A}{T} \left\{ \left[ -\frac{T}{4\pi (1 + n)} \cos{\pi(1 + n)} - \frac{T}{4 \pi (1 - n)} \cos{\pi (1 - n)} \right] - \left[ -\frac{T}{4 \pi (1 + n)} (1) - \frac{T}{4 \pi (1 - n)}(1) \right] \right\}

\displaystyle a_n = \frac{2A}{T}\left[ -\frac{T}{4\pi (1 + n)} \cos{\pi(1 + n)} - \frac{T}{4 \pi (1 - n)} \cos{\pi (1 - n)} + \frac{T}{4 \pi (1 + n)} + \frac{T}{4 \pi (1 - n)} \right]

\displaystyle a_n = \frac{2A}{T} \cdot \frac{T}{4\pi} \left[ -\frac{1}{1 + n} \cos{\pi(1 + n)} - \frac{1}{1 - n} \cos{\pi (1 - n)} + \frac{1}{1 + n} + \frac{1}{1 - n} \right]

\displaystyle a_n = \frac{A}{2\pi} \left[ -\frac{1}{1 + n} \cos{\pi(1 + n)} - \frac{1}{1 - n} \cos{\pi (1 - n)} + \frac{2}{(1 + n)(1 - n)} \right]

\displaystyle a_n = \frac{A}{2\pi} \left[ \frac{2}{(1 + n)(1 - n)} -\frac{1}{1 + n} \cos{\pi(1 + n)} - \frac{1}{1 - n} \cos{\pi (1 - n)} \right]

\displaystyle a_n = \frac{A}{2\pi} \cdot \frac{2}{(1 + n)(1 - n)} - \frac{A}{2\pi} \cdot \frac{1}{1 + n} \cos{\pi(1 + n)} - \frac{A}{2\pi} \cdot \frac{1}{1 - n} \cos{\pi (1 - n)}

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} - \frac{A}{2\pi(1 + n)} \cos{\pi(1 + n)} - \frac{A}{2\pi (1 - n)} \cos{\pi (1 - n)}

Si n=2,4,6, \cdots

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} - \frac{A}{2\pi(1 + n)} (-1) - \frac{A}{2\pi (1 - n)} (-1)

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} + \frac{A}{2\pi(1 + n)} + \frac{A}{2\pi (1 - n)}

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} + \frac{A}{\pi(1 + n)(1- n)} = \frac{2A}{\pi(1 + n)(1 - n)}

Si n=3,5,7, \cdots

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} - \frac{A}{2\pi(1 + n)} (1) - \frac{A}{2\pi (1 - n)} (1)

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} - \frac{A}{2\pi(1 + n)} - \frac{A}{2\pi (1 - n)}

\displaystyle a_n = \frac{A}{\pi(1 + n)(1 - n)} - \frac{A}{\pi(1 + n)(1- n)} = 0

Finalmente

\displaystyle a_n = \frac{2A}{\pi(1 + n)(1 - n)}

Cuando n=2,4,6, \cdots

Y calculando b_n

\displaystyle b_n = \frac{2}{T} \int_{-T/2}^{T/2}{f(t) \sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{2}{T} \int_{-T/2}^{0}{(0) \sin{n \omega_0 t} \, dt} + \frac{2}{T} \int_{0}^{T/2}{A \sin{\omega_0 t} \sin{n \omega_0 t} \, dt}

\displaystyle b_n = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \sin{n \omega_0 t} \, dt}

Si n=1, el integrando tiene la siguiente forma

\displaystyle b_1 = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \sin{\omega_0 t} \, dt}

\displaystyle b_1 = \frac{2A}{T} \int_{0}^{T/2}{\sin^2{\omega_0 t} \, dt} = \frac{2}{T} \int_{0}^{T/2}{\left(\frac{1}{2} - \frac{1}{2}\cos{2\omega_0 t} \right) \, dt}

\displaystyle b_1 = \frac{2A}{T} \left[\frac{1}{2} t - \frac{1}{4 \omega_0} \sin{2\omega_0 t} \right]_{0}^{T/2} = \frac{2A}{T} \left\{ \left[\frac{1}{2} (\frac{T}{2}) - \frac{1}{4 \omega_0} \sin{2\omega_0 (\frac{T}{2})} \right] - \left[\frac{1}{2} (0) - \frac{1}{4 \omega_0} \sin{2\omega_0 (0)} \right] \right\}

\displaystyle b_1 = \frac{2A}{T} \left\{ \left[\frac{T}{4} - \frac{1}{4 \omega_0} \sin{\omega_0 T} \right] - 0 \right\} = \frac{2A}{T} \left[\frac{T}{4} - \frac{1}{4 (\frac{2\pi}{T})} \sin{\frac{2\pi}{T} T} \right]

\displaystyle b_1 = \frac{2A}{T} \left(\frac{T}{4} - \frac{T}{8 \pi} \sin{2\pi} \right) = \frac{A}{2} - \frac{A}{4 \pi} \sin{2\pi} = \frac{A}{2}

Si n=2, 3, 4, \cdots, el integrando tiene la siguiente forma

\displaystyle b_n = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \sin{n \omega_0 t} \, dt}

Esta integral se resuelve por integración de productos de funciones seno y coseno con diferentes argumentos en la misma variable. Se observa que esta integral de la forma \displaystyle \int{\sin{mu} \sin{nu} \, du}, donde m=\omega_0 y n=n \omega_0, entonces

\displaystyle \int{\sin{\omega_0 t} \sin{n \omega_0 t} \, dt} = -\frac{1}{2(\omega_0 + n \omega_0)} \sin{(\omega_0 + n \omega_0)t} + \frac{1}{2(\omega_0 - n \omega_0)} \sin{(\omega_0 - n \omega_0)t}

\displaystyle = -\frac{1}{2\omega_0 (1 + n)} \sin{\omega_0(1 + n)t} + \frac{1}{2\omega_0(1 - n)} \sin{\omega_0(1 - n)t} + C

Remplazando la variable «t» por sus respectivos límites, resulta lo siguiente

\displaystyle = \frac{2A}{T} \int_{0}^{T/2}{\sin{\omega_0 t} \sin{n \omega_0 t} \, dt}

\displaystyle = \frac{2A}{T} \left[-\frac{1}{2\omega_0 (1 + n)} \sin{\omega_0(1 + n)t} + \frac{1}{2\omega_0(1 - n)} \sin{\omega_0(1 - n)t} \right]_{0}^{T/2}

\displaystyle = \frac{2A}{T} \left\{\left[-\frac{1}{2\omega_0 (1 + n)} \sin{\omega_0(1 + n)(\frac{T}{2})} + \frac{1}{2\omega_0(1 - n)} \sin{\omega_0(1 - n)(\frac{T}{2})} \right] - \left[-\frac{1}{2\omega_0 (1 + n)} \sin{\omega_0(1 + n)(0)} + \frac{1}{2\omega_0(1 - n)} \sin{\omega_0(1 - n)(0)} \right] \right\}

\displaystyle = \frac{2A}{T} \left\{\left[-\frac{1}{2 (\frac{2\pi}{T}) (1 + n)} \sin{(\frac{2\pi}{T})(1 + n)(\frac{T}{2})} + \frac{1}{2 (\frac{2\pi}{T}) (1 - n)} \sin{(\frac{2\pi}{T})(1 - n)(\frac{T}{2})} \right] - (-0 + 0) \right\}

\displaystyle = \frac{2A}{T} \left[-\frac{T}{4 \pi (1 + n)} \sin{\pi (1 + n)} + \frac{T}{4 \pi (1 - n)} \sin{\pi (1 - n)} \right]

\displaystyle = -\frac{A}{2 \pi (1 + n)} \sin{\pi (1 + n)} + \frac{A}{2 \pi (1 - n)} \sin{\pi (1 - n)}

Si n=2,4,6, \cdots

\displaystyle b_n = -\frac{A}{2 \pi (1 + n)} \sin{\pi (1 + n)} + \frac{A}{2 \pi (1 - n)} \sin{\pi (1 - n)}

\displaystyle = -\frac{A}{2 \pi (1 + n)} (0) + \frac{A}{2 \pi (1 - n)} (0) = 0

Si n = 3,5,7 \cdots

\displaystyle b_n = -\frac{A}{2 \pi (1 + n)} \sin{\pi (1 + n)} + \frac{A}{2 \pi (1 - n)} \sin{\pi (1 - n)}

\displaystyle b_n = -\frac{A}{2 \pi (1 + n)} (0) + \frac{A}{2 \pi (1 - n)} (0) = 0

Finalmente

b_n = 0

Regresando y sustituyendo los valores de los coeficientes a_0, a_n y b_n, se tiene el resultado final

\displaystyle f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

\displaystyle f(t) = \frac{1}{2} a_0 + \left(a_1 \cos{\omega_0 t}+b_1 \sin{\omega_0 t}\right) + \sum_{n=2}^{\infty}{(a_n \cos{\omega_0 t}+b_n \sin{\omega_0 t})}

\displaystyle f(t) = \frac{1}{2} \cdot \frac{2A}{\pi} + \left[ 0 \cos{\omega_0 t} + \frac{A}{2} \sin{\omega_0 t} \right] + \sum_{n=par}^{\infty}{\left[\frac{2A}{\pi (1+n)(1-n)} \cos{\omega_0 t} + (0) \sin{\omega_0 t} \right]}

\displaystyle \therefore f(t) = \frac{A}{\pi} + \frac{A}{2} \sin{\omega_0 t} + \sum_{n=par}^{\infty}{\frac{2A}{\pi (1+n)(1-n)} \cos{\omega_0 t}}

Problema 4. Desarrollar la función \sin^5{t} en serie de Fourier.

Solución. Utilizando la siguiente identidad

\displaystyle \sin{t} = \frac{e^{jn t} - e^{-jn t}}{2j}

Entonces (observando que n=1)

\displaystyle \sin^5{t} = (\sin{t})^5 = \left( \frac{e^{j t} - e^{-j t}}{2j} \right)^5

\displaystyle = \frac{ \left(e^{j t} - e^{-j t} \right)^5}{(2j)^5} = \frac{(e^{j t})^5 + 5 (e^{j t})^4 (-e^{-j t}) + 10 (e^{j t})^3 (-e^{-j t})^2 + 10(e^{j t})^2(-e^{-j t})^3 + 5(e^{j t})(-e^{-j t})^4 + (-e^{-j t})^5}{32j}

\displaystyle = \frac{e^{5j t} + 5 (e^{4j t}) (-e^{-j t}) + 10 (e^{3j t}) (e^{-2j t}) + 10(e^{2j t})(-e^{-3j t}) + 5(e^{j t})(e^{-4j t}) + (-e^{-5j t})}{32j}

\displaystyle = \frac{e^{5j t} - 5 e^{(4j t - jt)} + 10 e^{(3j t-2j t)} - 10 e^{(2j t-3j t)} + 5 e^{(j t-4j t)} - e^{-5j t}}{32j}

\displaystyle = \frac{e^{5j t} - 5 e^{3j t} + 10 e^{j t} - 10 e^{-j t} + 5 e^{-3j t} - e^{-5j t}}{32j}

\displaystyle = \frac{e^{5j t} - e^{-5j t} - 5 e^{3j t} + 5 e^{-3j t} + 10 e^{j t} - 10 e^{-j t}}{32j}

\displaystyle = \frac{e^{5j t} - e^{-5j t} - 5 (e^{3j t} - e^{-3j t}) + 10 (e^{j t} - e^{-j t})}{32j}

\displaystyle = \frac{e^{5j t} - e^{-5j t}}{32j} + \frac{(- 5) (e^{3j t} - e^{-3j t})}{32j} + \frac{(10) (e^{j t} - e^{-j t})}{32j}

\displaystyle = \frac{e^{5j t} - e^{-5j t}}{(16)(2j)} + \frac{(- 5) (e^{3j t} - e^{-3j t})}{(16)(2j)} + \frac{(10) (e^{j t} - e^{-j t})}{(16)(2j)}

\displaystyle = \frac{1}{16} \left(\frac{e^{5j t} - e^{-5j t}}{2j} \right) + \frac{(- 5)}{16} \left( \frac{e^{3j t} - e^{-3j t}}{2j} \right) + \frac{10}{16} \left(\frac{e^{j t} - e^{-j t}}{2j} \right)

\displaystyle = \frac{1}{16} \sin{5 t} - \frac{5}{16}\sin{3t} + \frac{10}{16} \sin{t} =  \frac{1}{16} \sin{5 t} - \frac{5}{16}\sin{3t} + \frac{5}{8} \sin{t}

Finalmente

\displaystyle \therefore f(t) = \frac{1}{16} \sin{5 t} - \frac{5}{16}\sin{3t} + \frac{5}{8} \sin{t}

O también

\displaystyle \therefore f(t) = \frac{5}{8} \sin{t}  - \frac{5}{16}\sin{3t} +  \frac{1}{16} \sin{5 t}

Y se concluye que la función f(t) al ser expresado como serie de Fourier, solo consta de tres términos.


Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.