Introducción

Si c_1 y c_2 son constantes arbitrarias y F_1 (s) y F_2 (s) son las transformadas de Laplace de f_1 (t) y f_2 (t), entonces,

\mathcal{L}^{-1} [F_1 (s) + F_2 (s)] = c_1 \cdot \mathcal{L}^{-1}[F_1 (s)] + c_2 \cdot \mathcal{L}^{-1}[F_2 (s)]

\mathcal{L}^{-1} [F_1 (s) + F_2 (s)] = c_1 \cdot f_1 (t) + c_2 \cdot f_2 (t)

Tambien se aplica para mas de dos funciones.

Problemas resueltos

Problema 1. Hallar f(t) para \displaystyle F(s) = \frac{5s+4}{s^3} - \frac{2s-18}{s^2+9} + \frac{24-30\sqrt{s}}{s^4}.

Solución. De la función brindada por el problema, se utiliza el símbolo \mathcal{L}^{-1} para aplicar la transformada inversa de Laplace.

\displaystyle F(s) = \frac{5s+4}{s^3} - \frac{2s-18}{s^2+9} + \frac{24-30\sqrt{s}}{s^4}

\displaystyle \mathcal{L}^{-1} [F(s)] = \mathcal{L}^{-1} \left[\frac{5s+4}{s^3} - \frac{2s-18}{s^2+9} + \frac{24-30\sqrt{s}}{s^4} \right]

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{5s}{s^3} + \frac{4}{s^3} - \frac{2s}{s^2+9} + \frac{18}{s^2+9} + \frac{24}{s^4} -  \frac{30\sqrt{s}}{s^4} \right]

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{5}{s^2} + \frac{4}{s^3} - \frac{2s}{s^2+9} + \frac{18}{s^2+9} + \frac{24}{s^4} - \frac{30{s}^{1/2}}{s^4} \right]

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{5}{s^2} + \frac{4}{s^3} - \frac{2s}{s^2+9} + \frac{18}{s^2+9} +\frac{24}{s^4} - \frac{30}{s^{7/2}} \right]

Aplicando la propiedad de linealidad, resulta

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{5}{s^2} \right] + \mathcal{L}^{-1} \left[\frac{4}{s^3}\right] - \mathcal{L}^{-1} \left[\frac{2s}{s^2+9}\right] + \mathcal{L}^{-1} \left[\frac{18}{s^2+9} \right] +\mathcal{L}^{-1} \left[\frac{24}{s^4} \right] - \mathcal{L}^{-1} \left[\frac{30}{s^{7/2}} \right]

\displaystyle f(t) = 5\ \mathcal{L}^{-1} \left[\frac{1}{s^2} \right] + 4\ \mathcal{L}^{-1} \left[\frac{1}{s^3}\right] - 2\ \mathcal{L}^{-1} \left[\frac{s}{s^2+9}\right] + 18 \ \mathcal{L}^{-1} \left[\frac{1}{s^2+9} \right] +24\ \mathcal{L}^{-1} \left[\frac{1}{s^4} \right] - 30 \ \mathcal{L}^{-1} \left[\frac{1}{s^{7/2}} \right]

\displaystyle f(t) = 5 \left(\frac{t}{1!} \right) + 4 \left(\frac{t^2}{2!}\right) - 2 \left(\cos{3t} \right) + 18 \left(\frac{1}{3} \sin{3t} \right) +24 \left(\frac{t^3}{3!} \right) - 30 \left(\frac{t^{5/2}}{\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}} \right)

\displaystyle f(t) = 5 \left(\frac{t}{1} \right) + 4 \left(\frac{t^2}{2}\right) - 2 \left(\cos{3t} \right) + 18 \left(\frac{1}{3} \sin{3t} \right) +24 \left(\frac{t^3}{6} \right) - 30 \left(\frac{t^{5/2}}{\frac{15}{8} \sqrt{\pi}} \right)

\displaystyle f(t) = 5t + 2t^2 - 2 \cos{3t} + \frac{18}{3} \sin{3t} + \frac{t^3}{6} - \frac{30 t^{5/2}}{\frac{15}{8} \sqrt{\pi}}

\displaystyle f(t) = 5t + 2t^2 - 2 \cos{3t} + 6 \sin{3t} + \frac{t^3}{6} - \frac{16 t^{5/2}}{\sqrt{\pi}}

\displaystyle f(t) = 5t + 2t^2 - 2 \cos{3t} + 6 \sin{3t} + \frac{t^3}{6} - \frac{16 t \cdot t^{1/2}}{\sqrt{\pi}}

\displaystyle f(t) = 5t + 2t^2 - 2 \cos{3t} + 6 \sin{3t} + \frac{t^3}{6} - 6t \cdot \frac{\sqrt{t}}{\sqrt{\pi}}

Finalmente

\displaystyle \therefore f(t) = 5t + 2t^2 - 2 \cos{3t} + 6 \sin{3t} + \frac{t^3}{6} - 6t \sqrt{\frac{t}{\pi}}

Problema 2. Hallar f(t) para \displaystyle F(s) = \frac{6}{2s-3} - \frac{3+4s}{9s^2-16} + \frac{8-6s}{16s^2+9}.

Solución. De la función brindada por el problema, se utiliza el símbolo \mathcal{L}^{-1} para aplicar la transformada inversa de Laplace.

\displaystyle F(s) = \frac{6}{2s-3} - \frac{3+4s}{9s^2-16} + \frac{8-6s}{16s^2+9}

\displaystyle \mathcal{L}^{-1} [F(s)] = \mathcal{L}^{-1} \left[\frac{6}{2s-3} - \frac{3+4s}{9s^2-16} + \frac{8-6s}{16s^2+9} \right]

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{6}{2s-3} - \frac{3}{9s^2-16} - \frac{4s}{9s^2-16} + \frac{8}{16s^2+9} - \frac{6s}{16s^2+9} \right]

Aplicando la propiedad de linealidad, resulta

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{6}{2s-3} \right] - \mathcal{L}^{-1} \left[\frac{3}{9s^2-16}\right] - \mathcal{L}^{-1} \left[\frac{4s}{9s^2-16} \right] + \mathcal{L}^{-1} \left[\frac{8}{16s^2+9} \right] - \mathcal{L}^{-1} \left[\frac{6s}{16s^2+9} \right]

\displaystyle f(t)= 6 \ \mathcal{L}^{-1} \left[\frac{1}{2s-3} \right] - 3 \ \mathcal{L}^{-1} \left[\frac{1}{9s^2-16}\right] - 4 \ \mathcal{L}^{-1} \left[\frac{s}{9s^2-16} \right] + 8 \ \mathcal{L}^{-1} \left[\frac{1}{16s^2+9} \right] - 6\ \mathcal{L}^{-1} \left[\frac{s}{16s^2+9} \right]

\displaystyle f(t) = 6 \ \mathcal{L}^{-1} \left[\frac{1}{2(s-\frac{3}{2})} \right] - 3 \ \mathcal{L}^{-1} \left[\frac{1}{9(s^2-\frac{16}{9})}\right] - 4 \ \mathcal{L}^{-1} \left[\frac{s}{9(s^2-\frac{16}{9})} \right] + 8 \ \mathcal{L}^{-1} \left[\frac{1}{16(s^2+\frac{9}{16})} \right] - 6\ \mathcal{L}^{-1} \left[\frac{s}{16(s^2+\frac{9}{16})} \right]

\displaystyle f(t) = \frac{6}{2} \ \mathcal{L}^{-1} \left[\frac{1}{s-\frac{3}{2}} \right] - \frac{3}{9} \mathcal{L}^{-1} \left[\frac{1}{s^2-\frac{16}{9}}\right] - \frac{4}{9} \mathcal{L}^{-1} \left[\frac{s}{s^2-\frac{16}{9}} \right] + \frac{8}{16} \mathcal{L}^{-1} \left[\frac{1}{s^2+\frac{9}{16}} \right] - \frac{6}{16} \mathcal{L}^{-1} \left[\frac{s}{s^2+\frac{9}{16}} \right]

\displaystyle f(t) =3 \ \mathcal{L}^{-1} \left[\frac{1}{s-\frac{3}{2}} \right] - \frac{1}{3} \mathcal{L}^{-1} \left[\frac{1}{s^2-\frac{16}{9}}\right] - \frac{4}{9} \mathcal{L}^{-1} \left[\frac{s}{s^2-\frac{16}{9}} \right] + \frac{1}{2} \mathcal{L}^{-1} \left[\frac{1}{s^2+\frac{9}{16}} \right] - \frac{3}{8} \mathcal{L}^{-1} \left[\frac{s}{s^2+\frac{9}{16}} \right]

\displaystyle f(t) =3 \left(e^{\frac{3}{2}t} \right) - \frac{1}{3}  \left(\frac{1}{\frac{4}{3}} \sinh{\frac{4}{3} t} \right) - \frac{4}{9} \left(\cosh{\frac{4}{3}t} \right) + \frac{1}{2} \left(\frac{1}{\frac{3}{4}} \sin{\frac{3}{4}t} \right) - \frac{3}{8} \left(\cos{\frac{3}{4}t} \right)

\displaystyle f(t) =3 \left(e^{\frac{3}{2}t} \right) - \frac{1}{3}  \left(\frac{3}{4} \sinh{\frac{4}{3} t} \right) - \frac{4}{9} \left(\cosh{\frac{4}{3}t} \right) + \frac{1}{2} \left(\frac{4}{3} \sin{\frac{3}{4}t} \right) - \frac{3}{8} \left(\cos{\frac{3}{4}t} \right)

Finalmente,

\displaystyle \therefore f(t) =3 e^{\frac{3}{2}t} - \frac{1}{4} \sinh{\frac{4}{3} t} - \frac{4}{9} \cosh{\frac{4}{3}t} + \frac{2}{3} \sin{\frac{3}{4}t} - \frac{3}{8} \cos{\frac{3}{4}t}

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.