Introducción

Si \mathcal{L}^{-1}[F(s)] = f(t), entonces

\displaystyle \mathcal{L}^{-1}[F(ks)] = \frac{1}{k} \cdot f \left(\frac{t}{k} \right)

Donde k representa una constante.

Demostración

Sea

\displaystyle F(s) = \int_0^{\infty}{e^{-st} f(t) \ dt}

Cambiando s por ks

\displaystyle F(ks) = \int_0^{\infty}{e^{-kst} f(t) \ dt}

\displaystyle F(ks) = \int_0^{\infty}{e^{-kt \cdot s} f(t) \ dt}

Aplicando la sustitución u=kt y du=k \ dt, resulta

\displaystyle F(ks) = \int_0^{\infty}{e^{-s \cdot u} f \left(\frac{u}{k} \right) \ \left(\frac{1}{k} du \right)}

\displaystyle F(ks) = \frac{1}{k} \int_0^{\infty}{e^{-su} f \left(\frac{u}{k} \right) \ du}

\displaystyle F(ks) = \frac{1}{k} \cdot f \left(\frac{t}{k} \right)

Problemas resueltos

Problema 1. Si \displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/s}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{t}}}{\sqrt{\pi t}}, hallar \displaystyle \mathcal{L}^{-1} \left[\frac{e^{-a/s}}{s^{1/2}} \right] donde a>0.

Solución. Tomando la función

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/s}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{t}}}{\sqrt{\pi t}}

Aplicando la propiedad del cambio de escala de la transformada inversa de Laplace, resulta que

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{(ks)^{1/2}} \right] = \frac{1}{k} \cdot \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi \cdot \frac{t}{k}}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{(ks)^{1/2}} \right] = \frac{1}{k} \cdot \frac{\sqrt{k} \ \cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi \cdot t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{(ks)^{1/2}} \right] = \frac{\sqrt{k}}{k} \cdot \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{\sqrt{ks}} \right] = \frac{1}{\sqrt{k}} \cdot \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi t}}

\displaystyle \frac{1}{\sqrt{k}} \ \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{\sqrt{s}} \right] = \frac{1}{\sqrt{k}} \cdot \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{\sqrt{s}} \right] = \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi t}}

Cambiando k por \displaystyle \frac{1}{a}, resulta que

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/(ks)}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{\frac{t}{k}}}}{\sqrt{\pi t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-1/k \cdot 1/s}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{\frac{1}{k} t}}}{\sqrt{\pi t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-a \cdot 1/s}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{at}}}{\sqrt{\pi t}}

\displaystyle \mathcal{L}^{-1} \left[\frac{e^{-a/s}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{at}}}{\sqrt{\pi t}}

Se concluye que

\displaystyle \therefore \mathcal{L}^{-1} \left[\frac{e^{-a/s}}{s^{1/2}} \right] = \frac{\cos{2 \sqrt{at}}}{\sqrt{\pi t}}

Problema 2. Si \displaystyle \mathcal{L}^{-1} \left[\frac{1}{s\sqrt{s+1}} \right] = \text{fer} \ (\sqrt{t}), hallar \displaystyle \mathcal{L}^{-1} \left[\frac{1}{s\sqrt{s+a}} \right], donde a>0.

Solución. Tomando la función

\displaystyle \mathcal{L}^{-1} \left[\frac{1}{s\sqrt{s+1}} \right] = \text{fer} \ (\sqrt{t})

Aplicando la propiedad del cambio de escala para la transformada inversa de Laplace, se tiene lo siguiente

\displaystyle \mathcal{L}^{-1} \left[\frac{1}{ks \sqrt{ks+1}} \right] = \frac{1}{k} \text{fer} \ \left(\sqrt{\frac{t}{k}} \right)

\displaystyle \mathcal{L}^{-1} \left[\frac{1}{k s \sqrt{k \left(s+\frac{1}{k} \right)}} \right] = \frac{1}{k} \text{fer} \ \left( \sqrt{\frac{t}{k}} \right)

\displaystyle \mathcal{L}^{-1} \left[\frac{1}{k \cdot s \sqrt{k} \sqrt{s+\frac{1}{k}}} \right] = \frac{1}{k} \text{fer} \ \left( \sqrt{\frac{1}{k} \cdot t} \right)

\displaystyle \mathcal{L}^{-1} \left[\frac{1}{k} \cdot \frac{1}{\sqrt{k}} \cdot \frac{1}{s \sqrt{s+\frac{1}{k}}} \right] = \frac{1}{k} \text{fer} \ \left( \sqrt{\frac{1}{k} \cdot t} \right)

\displaystyle \frac{1}{k} \mathcal{L}^{-1} \left[\sqrt{\frac{1}{k}} \cdot \frac{1}{s \sqrt{s+\frac{1}{k}}} \right] = \frac{1}{k} \text{fer} \ \left( \sqrt{\frac{1}{k} \cdot t} \right)

\displaystyle \mathcal{L}^{-1} \left[\sqrt{\frac{1}{k}} \cdot \frac{1}{s \sqrt{s+\frac{1}{k}}} \right] = \text{fer} \ \left( \sqrt{\frac{1}{k} \cdot t} \right)

Cambiando \displaystyle \frac{1}{k} por a

\displaystyle \mathcal{L}^{-1} \left[\sqrt{a} \cdot \frac{1}{s \sqrt{s+a}} \right] = \text{fer} \ \left( \sqrt{a \cdot t} \right)

\displaystyle \sqrt{a} \ \mathcal{L}^{-1} \left[\frac{1}{s \sqrt{s+a}} \right] = \text{fer} \ \left( \sqrt{at} \right)

\displaystyle \mathcal{L}^{-1} \left[\frac{1}{s \sqrt{s+a}} \right] = \frac{1}{\sqrt{a}} \text{fer} \ \left( \sqrt{at} \right)

Se concluye que

\displaystyle \therefore \mathcal{L}^{-1} \left[\frac{1}{s \sqrt{s+a}} \right] = \frac{1}{\sqrt{a}} \text{fer} \ \left( \sqrt{at} \right)


Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.