Problemas resueltos

Problema 1. Calcular \displaystyle \int_{0}^{t}{J_0 (t) \ J_0 (t-u) \ du}.

Solución. Sea \displaystyle g(t) = \int_{0}^{t}{J_0 (u) \ J_0 (t-u) \ du}. Luego, aplicando el teorema de convolución

\displaystyle \mathcal{L}[g(t)] = \mathcal{L} [J_0 (t)] \ \mathcal{L} [J_0 (t)]

\displaystyle \mathcal{L}[g(t)] = \left(\frac{1}{\sqrt{s^2+1}} \right) \left(\frac{1}{\sqrt{s^2+1}} \right)

\displaystyle \mathcal{L}[g(t)] = \left(\frac{1}{\sqrt{s^2+1}} \right)^2

\displaystyle \mathcal{L}[g(t)] = \frac{1}{s^2+1}

Despejando g(t)

\displaystyle g(t) = \mathcal{L}^{-1} \left[\frac{1}{s^2+1} \right]

\displaystyle g(t) = \sin{t}

\displaystyle \int_{0}^{t}{J_0 (t) \ J_0 (t-u) \ du} = \sin{t}

Por lo tanto,

\displaystyle \therefore \int_{0}^{t}{J_0 (t) \ J_0 (t-u) \ du} = \sin{t}

Problema 2. Hallar \displaystyle \int_0^{\infty}{\cos{x^2} \ dx}.

Solución. Sea \displaystyle f(t) = \int_0^{\infty}{\cos{tx^2} \ dx}. Después, aplicando la transformada de Laplace, se tiene que

\displaystyle f(t) = \int_0^{\infty}{\cos{tx^2} \ dx}

\displaystyle \mathcal{L} [f(t)] = \mathcal{L} \left[\int_0^{\infty}{\cos{tx^2} \ dx} \right]

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{e^{-st} \ dt \ \int_0^{\infty}{\cos{tx^2} \ dx}}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{dx \ \int_0^{\infty}{e^{-st} \ \cos{tx^2} \ dt}}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{\mathcal{L} [\cos{tx^2}] \ dx}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{\frac{s}{s^2 + (x^2)^2} \ dx}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{\frac{s}{s^2 + x^4} \ dx}

Ahora, sea x^2= s \tan{\theta}, \displaystyle x = \sqrt{s} \sqrt{\tan{\theta}} y \displaystyle dx= \frac{\sqrt{s} \sec^2{\theta}}{2 \sqrt{\tan{\theta}}} \ d\theta. Entonces,

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{\frac{s}{s^2 + x^4} \ dx}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\pi/2}{\frac{s}{s^2 + s^2 \tan^2{\theta}} \ \frac{\sqrt{s} \sec^2{\theta}}{2 \sqrt{\tan{\theta}}} \ d\theta}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\pi/2}{\frac{1}{1 + \tan^2{\theta}} \ \frac{\sec^2{\theta}}{2\sqrt{s} \sqrt{\tan{\theta}}} \ d\theta}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{2 \sqrt{s}} \int_0^{\pi/2}{\frac{1}{\sqrt{\tan{\theta}}} \ d\theta}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{2 \sqrt{s}} \int_0^{\pi/2}{\tan^{-1/2}{\theta} \ d\theta}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{2 \sqrt{s}} \int_0^{\pi/2}{\sin^{-1/2}{\theta} \cos^{1/2}{\theta} \ d\theta}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{2 \sqrt{s}} \cdot \frac{\Gamma \left(\frac{1}{4} \right) \Gamma \left(\frac{3}{4} \right)}{2 \Gamma \left(\frac{1}{4} + \frac{3}{4} \right)}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{2 \sqrt{s}} \cdot \frac{\Gamma \left(\frac{1}{4} \right) \Gamma \left(\frac{3}{4} \right)}{2 \Gamma \left(1 \right)}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{2 \sqrt{s}} \cdot \frac{\frac{\pi}{\sin{\frac{\pi}{4}}}}{2 \left(1 \right)}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{4 \sqrt{s}} \cdot \frac{\pi}{\sin{\frac{\pi}{4}}}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{4 \sqrt{s}} \cdot \frac{\pi}{\frac{1}{\sqrt{2}}}

\displaystyle \mathcal{L} [f(t)] = \frac{\pi \sqrt{2}}{4 \sqrt{s}}

Despejando f(t)

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{\pi \sqrt{2}}{4 \sqrt{s}} \right]

\displaystyle f(t) = \frac{\pi \sqrt{2}}{4} \mathcal{L}^{-1} \left[\frac{1}{\sqrt{s}} \right]

\displaystyle f(t) = \frac{\pi \sqrt{2}}{4} \left(\frac{t^{-1/2}}{\sqrt{\pi}} \right)

\displaystyle f(t) = \frac{\sqrt{2 \pi}}{4} t^{-1/2}

\displaystyle \int_0^{\infty}{\cos{tx^2} \ dx} = \frac{\sqrt{2 \pi}}{4} t^{-1/2}

Si t=1, el resultado final es

\displaystyle \int_0^{\infty}{\cos{(1) x^2} \ dx} = \frac{\sqrt{2 \pi}}{4} {(1)}^{-1/2}

\displaystyle \int_0^{\infty}{\cos{x^2} \ dx} = \frac{\sqrt{2 \pi}}{4}

\displaystyle \therefore \int_0^{\infty}{\cos{x^2} \ dx} = \frac{1}{2} \sqrt{\frac{\pi}{2}}

Problema 3. Hallar \displaystyle \int_{0}^{\infty}{e^{-x^2} \ dx}.

Solución. Sea \displaystyle f(t) = \int_{0}^{\infty}{e^{-tx^2} \ dx} . Aplicando la transformada de Laplace, resulta

\displaystyle \mathcal{L} [f(t)] = \mathcal{L} \left[\int_{0}^{\infty}{e^{-tx^2} \ dx} \right]

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{e^{-st} \ dt \ \int_{0}^{\infty}{e^{-tx^2} \ dx}}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{dx \ \int_{0}^{\infty}{e^{-st} \ e^{-tx^2} \ dt}}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{\mathcal{L} [e^{-tx^2}] \ dx} = \int_0^{\infty}{\mathcal{L} [e^{-x^2 t}] \ dx}

\displaystyle \mathcal{L} [f(t)] = \int_0^{\infty}{\frac{1}{s + x^2} \ dx}

\displaystyle \mathcal{L} [f(t)] = \left[\frac{1}{\sqrt{s}} \arctan{\left(\frac{x}{\sqrt{s}} \right)} \right]_0^{\infty}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{\sqrt{s}} \arctan{\left(\frac{\infty}{\sqrt{s}} \right)} - \arctan{\left(\frac{0}{\sqrt{s}} \right)}

\displaystyle \mathcal{L} [f(t)] = \frac{1}{\sqrt{s}} \left(\frac{\pi}{2} \right)

\displaystyle \mathcal{L} [f(t)] = \frac{\pi}{2 \sqrt{s}}

Despejando f(t), se tiene que

\displaystyle f(t) = \mathcal{L}^{-1} \left[\frac{\pi}{2 \sqrt{s}} \right]

\displaystyle f(t) = \frac{\pi}{2} \mathcal{L}^{-1} \left[\frac{1}{\sqrt{s}} \right]

\displaystyle f(t) = \frac{\pi}{2} \left(\frac{t^{-1/2}}{\sqrt{\pi}} \right)

\displaystyle f(t) = \frac{\sqrt{\pi}}{2} t^{-1/2}

\displaystyle \int_{0}^{\infty}{e^{-tx^2} \ dx} = \frac{\sqrt{\pi}}{2} t^{-1/2}

Cuando t=1, se tiene el resultado final

\displaystyle \int_{0}^{\infty}{e^{-(1)x^2} \ dx} = \frac{\sqrt{\pi}}{2} {(1)}^{-1/2}

\displaystyle \therefore \int_{0}^{\infty}{e^{-x^2} \ dx} = \frac{\sqrt{\pi}}{2}


Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.