Introducción

La transformada de Laplace presenta gran utilidad para resolver ecuaciones diferenciales con coeficientes constantes. Considerando como ejemplo, una ecuación diferencial de segundo orden

\displaystyle \frac{d^2y}{dt^2} + \alpha \frac{dy}{dt} +  \beta y = f(t)

donde \alpha y \beta son constantes sometidas a ciertas condiciones iniciales o condiciones de la frontera como lo son y(0) = A y y'(0) = B donde A y B son constantes. Aplicando la transformada de Laplace en ambos miembros se obtiene una ecuación algebraica para determinar \mathcal{L}[y(t)] = Y(s) y finalmente se calcula la transformada inversa de Laplace. Este procedimiento se puede aplicar si la ecuación diferencial es de orden superior.

Problemas resueltos

Problema 1. Resolver y'' +y = t para y(0) = 1 y y'(0) = -2.

Solución. De la ecuación diferencial, se aplica la transformada de Laplace por ambos lados.

\displaystyle \mathcal{L} [y'' +y] = \mathcal{L} [t]

\displaystyle \mathcal{L} [y''] + \mathcal{L} [y] = \mathcal{L} [t]

Aplicando las fórmulas y propiedades correspondientes para cada término

\displaystyle s^2 Y(s) - s y(0) - y'(0) + Y(s) = \frac{1}{s^2}

Sabiendo que y(0)=1 y y'(0) = -2

\displaystyle s^2 Y(s) - s (1) - (-2) + Y(s) = \frac{1}{s^2}

\displaystyle s^2 Y(s) - s + 2 + Y(s) = \frac{1}{s^2}

Despejando Y(s)

\displaystyle (s^2 +1) Y(s) - s + 2 = \frac{1}{s^2}

\displaystyle (s^2 +1) Y(s) = s - 2 + \frac{1}{s^2}

\displaystyle Y(s) = \frac{s - 2}{s^2+1} + \frac{1}{s^2 (s^2+1)}

\displaystyle Y(s) = \frac{s}{s^2+1} - \frac{2}{s^2+1} + \frac{A}{s^2} + \frac{B}{s^2+1}

\displaystyle Y(s) = \frac{s}{s^2+1} - \frac{2}{s^2+1} + \frac{1}{s^2} - \frac{1}{s^2+1}

Tomando la transformada inversa de Laplace en ambos miembros

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{s}{s^2+1} - \frac{2}{s^2+1} + \frac{1}{s^2} - \frac{1}{s^2+1} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{s}{s^2+1} \right] - \mathcal{L}^{-1} \left[\frac{2}{s^2+1} \right] + \mathcal{L}^{-1} \left[\frac{1}{s^2}\right] - \mathcal{L}^{-1} \left[\frac{1}{s^2+1} \right]

\displaystyle y(t) = \cos{t} - 2 \sin{t} + \frac{t}{1!} - \sin{t}

\displaystyle y(t) = \cos{t} - 3 \sin{t} + t

Finalmente,

\displaystyle \therefore y(t) = \cos{t} - 3 \sin{t} + t

Problema 2. Resolver y'' - 3y' + 2y = 4e^{2t} para y(0)=-3 y y'(0)=5.

Solución. De la ecuación diferencial, se toma la transformada de Laplace en ambos lados

\displaystyle y'' - 3y' + 2y = 4e^{2t}

\displaystyle \mathcal{L} [y'' - 3y' + 2y] = \mathcal{L} [4e^{2t}]

\displaystyle \mathcal{L} [y''] - \mathcal{L} [3y'] + \mathcal{L} [2y] = \mathcal{L} [4e^{2t}]

\displaystyle \mathcal{L} [y''] - 3 \mathcal{L} [y'] + 2\mathcal{L} [y] = 4\mathcal{L} [e^{2t}]

Aplicando las fórmulas y propiedades para cada término

\displaystyle \mathcal{L} [y''] - 3 \mathcal{L} [y'] + 2\mathcal{L} [y] = 4\mathcal{L} [e^{2t}]

\displaystyle s^2 Y(s) - s y(0) - y'(0) - 3 \left[s Y(s) - y(0) \right] + 2 Y(s) = 4 \left(\frac{1}{s-2} \right)

Sabiendo que y(0) = -3 y y'(0) = 5, resulta

\displaystyle s^2 Y(s) - s (-3) - (5) - 3 \left[s Y(s) - (-3) \right] + 2 Y(s) = \frac{4}{s-2}

\displaystyle s^2 Y(s) + 3s - 5 - 3 \left[s Y(s) + 3 \right] + 2 Y(s) = \frac{4}{s-2}

\displaystyle s^2 Y(s) + 3s - 5 - 3s Y(s) - 9  + 2 Y(s) = \frac{4}{s-2}

\displaystyle (s^2 - 3s + 2) Y(s) + 3s - 14 = \frac{4}{s-2}

\displaystyle (s^2 - 3s + 2) Y(s) =14 - 3s + \frac{4}{s-2}

\displaystyle Y(s) =\frac{14 - 3s}{s^2-3s+2} + \frac{4}{(s-2)(s^2-3s+2)}

\displaystyle Y(s) =\frac{(s-2)(14 - 3s)}{(s-2)(s^2-3s+2)} + \frac{4}{(s-2)(s^2-3s+2)}

\displaystyle Y(s) =\frac{14s-3s^2-28+6s}{(s-2)(s^2-3s+2)} + \frac{4}{(s-2)(s^2-3s+2)}

\displaystyle Y(s) =\frac{-3s^2+20s-28}{(s-2)(s^2-3s+2)} + \frac{4}{(s-2)(s^2-3s+2)}

\displaystyle Y(s) =\frac{-3s^2+20s-28+4}{(s-2)(s^2-3s+2)}

\displaystyle Y(s) =\frac{-3s^2+20s-24}{(s-2)(s^2-3s+2)}

\displaystyle Y(s) =\frac{-3s^2+20s-24}{(s-2)(s-1)(s-2)}

\displaystyle Y(s) =\frac{-3s^2+20s-24}{(s-2)^2(s-1)}

Aplicando el método de fracciones parciales,

\displaystyle Y(s) = \frac{4}{(s-2)^2} + \frac{4}{(s-2)} - \frac{7}{(s-1)}

Utilizando la transformada inversa de Laplace, resulta

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{4}{(s-2)^2} \right] + \mathcal{L}^{-1} \left[\frac{4}{(s-2)} \right] - \mathcal{L}^{-1} \left[\frac{7}{(s-1)} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = 4 \mathcal{L}^{-1} \left[\frac{1}{(s-2)^2} \right] + 4 \mathcal{L}^{-1} \left[\frac{1}{(s-2)} \right] - 7 \mathcal{L}^{-1} \left[\frac{1}{(s-1)} \right]

\displaystyle y(t) = 4 t e^{2t} + 4 e^{2t} - 7e^{t}

Así que, el resultado final es

\displaystyle \therefore y(t) = 4 t e^{2t} + 4 e^{2t} - 7e^{t}

Problema 3. Resolver \displaystyle y'' + 2y' + 5y = e^{-t} \sin{t}, donde y(0)=0 y y'(0) = 1.

Solución. Tomando la transformada de Laplace por ambos lados y aplicando la propiedad de linealidad, resulta que

\displaystyle y'' + 2y' + 5y = e^{-t} \sin{t}

\displaystyle \mathcal{L} [y'' + 2y' + 5y] = \mathcal{L} [e^{-t} \sin{t}]

\displaystyle \mathcal{L} [y''] + \mathcal{L} [2y'] + \mathcal{L} [5y] = \mathcal{L} [e^{-t} \sin{t}]

\displaystyle \mathcal{L} [y''] + 2\mathcal{L} [y'] + 5\mathcal{L} [y] = \mathcal{L} [e^{-t} \sin{t}]

\displaystyle s^2 Y(s) - s y(0) - y'(0) + 2[s Y(s) - y(0)] + 5 Y(s) = \frac{1}{(s+1)^2+1}

\displaystyle s^2 Y(s) - s y(0) - y'(0) + 2[s Y(s) - y(0)] + 5 Y(s) = \frac{1}{s^2+2s+1+1}

\displaystyle s^2 Y(s) - s y(0) - y'(0) + 2[s Y(s) - y(0)] + 5 Y(s) = \frac{1}{s^2+2s+2}

Tomando las condiciones iniciales y(0)=0 y y'(0)=1, se tiene que

\displaystyle s^2 Y(s) - s (0) - (1) + 2[s Y(s) - 0] + 5 Y(s) = \frac{1}{s^2+2s+2}

\displaystyle s^2 Y(s) - 1 + 2s Y(s) + 5 Y(s) = \frac{1}{s^2+2s+2}

\displaystyle (s^2 + 2s + 5) Y(s) = 1+ \frac{1}{s^2+2s+2}

\displaystyle (s^2 + 2s + 5) Y(s) = \frac{s^2+2s+3}{s^2+2s+2}

\displaystyle Y(s) = \frac{s^2+2s+3}{(s^2+2s+5)(s^2+2s+2)}

Por el método de fracciones parciales

\displaystyle Y(s) = \frac{As+B}{s^2+2s+2} + \frac{Cs+D}{s^2+2s+5}

\displaystyle Y(s) = \frac{0s+1/3}{s^2+2s+2} + \frac{0s+2/3}{s^2+2s+5}

\displaystyle Y(s) = \frac{1/3}{s^2+2s+2} + \frac{2/3}{s^2+2s+5}

Aplicando \mathcal{L}^{-1} en ambos miembros

\displaystyle \mathcal{L}^{-1} \left[Y(s) \right] = \mathcal{L}^{-1} \left[ \frac{1/3}{s^2+2s+2} + \frac{2/3}{s^2+2s+5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[ \frac{1/3}{s^2+2s+2} \right] + \mathcal{L}^{-1} \left[\frac{2/3}{s^2+2s+5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{1}{3} \mathcal{L}^{-1} \left[ \frac{1}{s^2+2s+2} \right] + \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{s^2+2s+5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{1}{3} \mathcal{L}^{-1} \left[ \frac{1}{s^2+2s+(\frac{2}{2})^2 - (\frac{2}{2})^2 +2} \right] + \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{s^2+2s+(\frac{2}{2})^2 - (\frac{2}{2})^2 +5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{1}{3} \mathcal{L}^{-1} \left[ \frac{1}{s^2+2s+(1)^2 - (1)^2 +2} \right] + \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{s^2+2s+(1)^2 - (1)^2 +5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{1}{3} \mathcal{L}^{-1} \left[ \frac{1}{(s+1)^2 - (1)^2 +2} \right] + \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{(s+1)^2 - (1)^2 +5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{1}{3} \mathcal{L}^{-1} \left[ \frac{1}{(s+1)^2 - 1 +2} \right] + \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{(s+1)^2 - 1 +5} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{1}{3} \mathcal{L}^{-1} \left[ \frac{1}{(s+1)^2 +1} \right] + \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{(s+1)^2 + 4} \right]

\displaystyle y(t) = \frac{1}{3} e^{-t} \sin{t} + \frac{2}{3} \cdot \frac{1}{2} e^{-t} \sin{2t}

\displaystyle y(t) = \frac{1}{3} e^{-t} \sin{t} + \frac{1}{3} e^{-t} \sin{2t}

\displaystyle y(t) = \frac{1}{3} e^{-t} (\sin{t} + \sin{2t})

Finalmente

\displaystyle \therefore y(t) = \frac{1}{3} e^{-t} (\sin{t} + \sin{2t})

Problema 4. Resolver \displaystyle y'''-3y''+3y'-y=t^2 e^t, donde y(0)=1, y'(0)=0 y y''(0)=-2.

Solución. Tomando la transformada de laplace en ambos miembros y aplicando la propiedad de linealidad, resulta que

\displaystyle y'''-3y''+3y'-y=t^2 e^t

\displaystyle \mathcal{L} [y'''-3y''+3y'-y] = \mathcal{L} [t^2 e^t]

\displaystyle \mathcal{L} [y'''] - \mathcal{L} [3y''] + \mathcal{L} [3y'] - \mathcal{L} [y] = \mathcal{L} [t^2 e^t]

\displaystyle \mathcal{L} [y'''] - 3 \mathcal{L} [y''] + 3 \mathcal{L} [y'] - \mathcal{L} [y] = \mathcal{L} [t^2 e^t]

\displaystyle s^3 Y(s) - s^2 y(0) - s y'(0) - y''(0) - 3 [s^2 Y(s) - s y(0) - y'(0)] + 3 [sY(s) - y(0)] - Y(s) = \frac{2!}{(s-1)^3}

\displaystyle s^3 Y(s) - s^2 y(0) - s y'(0) - y''(0) - 3 [s^2 Y(s) - s y(0) - y'(0)] + 3 [sY(s) - y(0)] - Y(s) = \frac{2}{(s-1)^3}

Sabiendo que y(0)=1, y'(0)=0 y y''(0)=-2, se tiene lo siguiente

\displaystyle s^3 Y(s) - s^2 (1) - s (0) - (-2) - 3 [s^2 Y(s) - s (1) - (0)] + 3 [sY(s) - 1] - Y(s) = \frac{2}{(s-1)^3}

\displaystyle s^3 Y(s) - s^2 + 2 - 3 [s^2 Y(s) - s] + 3 [sY(s) - 1] - Y(s) = \frac{2}{(s-1)^3}

\displaystyle s^3 Y(s) - s^2 + 2 - 3 s^2 Y(s) + 3s + 3s Y(s) - 3 - Y(s) = \frac{2}{(s-1)^3}

\displaystyle (s^3-3s^2+3s-1) Y(s) - s^2 + 3s - 1 = \frac{2}{(s-1)^3}

\displaystyle (s^3-3s^2+3s-1) Y(s) = s^2 - 3s + 1 + \frac{2}{(s-1)^3}

\displaystyle (s-1)^3 Y(s) = s^2 - 2s - s + 1 + 1 - 1 + \frac{2}{(s-1)^3}

\displaystyle (s-1)^3 Y(s) = (s^2 - 2s + 1) - (s - 1) - 1 + \frac{2}{(s-1)^3}

\displaystyle (s-1)^3 Y(s) = (s+1)^2 + (s - 1) - 1 + \frac{2}{(s-1)^3}

\displaystyle Y(s) = \frac{(s+1)^2}{(s-1)^3} + \frac{(s - 1)}{(s-1)^3} - \frac{1}{(s-1)^3} + \frac{2}{(s-1)^3 (s-1)^3}

\displaystyle Y(s) = \frac{1}{(s-1)} + \frac{1}{(s-1)^2} - \frac{1}{(s-1)^3} + \frac{2}{(s-1)^6}

Aplicando \mathcal{L}^{-1} en ambos miembros

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{1}{(s-1)} + \frac{1}{(s-1)^2} - \frac{1}{(s-1)^3} + \frac{2}{(s-1)^6} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{1}{(s-1)} \right] + \mathcal{L}^{-1} \left[\frac{1}{(s-1)^2} \right] - \mathcal{L}^{-1} \left[\frac{1}{(s-1)^3} \right] + \mathcal{L}^{-1} \left[\frac{2}{(s-1)^6} \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{1}{(s-1)} \right] + \mathcal{L}^{-1} \left[\frac{1}{(s-1)^2} \right] - \mathcal{L}^{-1} \left[\frac{1}{(s-1)^3} \right] + 2 \ \mathcal{L}^{-1} \left[\frac{1}{(s-1)^6} \right]

\displaystyle y(t) = e^{t} + \frac{t e^{t}}{1!} - \frac{t^2 e^t}{2!}+  2 \left(\frac{t^5 e^t}{5!} \right)

\displaystyle y(t) = e^{t} + \frac{t e^{t}}{1} - \frac{t^2 e^t}{2}+  2 \left(\frac{t^5 e^t}{120} \right)

\displaystyle y(t) = e^{t} + t e^{t} - \frac{1}{2} t^2 e^t+  \frac{1}{60} t^5 e^t

Finalmente,

\displaystyle \therefore y(t) = e^{t} + t e^{t} - \frac{1}{2} t^2 e^t+  \frac{1}{60} t^5 e^t

Problema 5. Resolver \displaystyle y'' + 9y = \cos{2t} si y(0) = 1 y \displaystyle y \left(\frac{\pi}{2} \right) = -1.

Solución. Aplicando la transformada de Laplace en ambos miembros,

\displaystyle y'' + 9y = \cos{2t}

\displaystyle \mathcal{L} [y'' + 9y] = \mathcal{L} [\cos{2t}]

\displaystyle \mathcal{L} [y''] + \mathcal{L} [9y] = \mathcal{L} [\cos{2t}]

\displaystyle \mathcal{L} [y''] + 9 \mathcal{L} [y] = \mathcal{L} [\cos{2t}]

\displaystyle s^2 Y(s) - s y(0) - y'(0) + 9 Y(s)= \frac{s}{s^2+4}

Sabiendo que y(0)=1

\displaystyle s^2 Y(s) - s (1) - y'(0) + 9 Y(s)= \frac{s}{s^2+4}

\displaystyle s^2 Y(s) - s - y'(0) + 9 Y(s)= \frac{s}{s^2+4}

\displaystyle (s^2 + 9) Y(s) - s - y'(0) = \frac{s}{s^2+4}

Como no se tiene definido y'(0), sea y'(0)=c.

\displaystyle (s^2 + 9) Y(s) - s - c = \frac{s}{s^2+4}

Continuando

\displaystyle (s^2 + 9) Y(s) = s + c + \frac{s}{s^2+4}

\displaystyle Y(s) = \frac{s + c}{s^2+9} + \frac{s}{(s^2+4)(s^2+9)}

\displaystyle Y(s) = \frac{s}{s^2+9} + \frac{c}{s^2+9} + \frac{As+B}{s^2+4} + \frac{Cs+D}{s^2+9}

\displaystyle Y(s) = \frac{s}{s^2+9} + \frac{c}{s^2+9} + \frac{\frac{1}{5} s+0}{s^2+4} - \frac{\frac{1}{5} s+0}{s^2+9}

\displaystyle Y(s) = \frac{s}{s^2+9} + \frac{c}{s^2+9} + \frac{\frac{1}{5} s}{s^2+4} - \frac{\frac{1}{5} s}{s^2+9}

\displaystyle Y(s) = \frac{s}{s^2+9} + \frac{c}{s^2+9} + \frac{1}{5} \left(\frac{s}{s^2+4} \right) - \frac{1}{5} \left(\frac{s}{s^2+9} \right)

\displaystyle Y(s) = \frac{4}{5} \left(\frac{s}{s^2+9} \right) + \frac{c}{s^2+9} + \frac{1}{5} \left(\frac{s}{s^2+4} \right)

Tomando \mathcal{L}^{-1} en ambos lados

\displaystyle \mathcal{L}^{-1} [Y(s)] = \mathcal{L}^{-1} \left[\frac{4}{5} \left(\frac{s}{s^2+9} \right) + \frac{c}{s^2+9} + \frac{1}{5} \left(\frac{s}{s^2+4} \right) \right]

\displaystyle \mathcal{L}^{-1} [Y(s)] = \frac{4}{5} \ \mathcal{L}^{-1} \left[\frac{s}{s^2+9} \right] + c \ \mathcal{L}^{-1} \left[\frac{1}{s^2+9} \right] + \frac{1}{5} \ \mathcal{L}^{-1} \left[\frac{s}{s^2+4} \right]

\displaystyle y(t) = \frac{4}{5} \cos{3t} + \frac{c}{3} \sin{3t} + \frac{1}{5} \cos{2t}

Para determinar el valor c, se toma \displaystyle y \left(\frac{\pi}{2} \right) = -1.

\displaystyle y \left( \frac{\pi}{2} \right) = \frac{4}{5} \cos{\left(3 \cdot \frac{\pi}{2} \right)} + \frac{c}{3} \sin{\left(3 \cdot \frac{\pi}{2} \right)} + \frac{1}{5} \cos{\left(2 \cdot \frac{\pi}{2} \right)}

\displaystyle y \left( \frac{\pi}{2} \right) = \frac{4}{5} \cos{\frac{3 \pi}{2}} + \frac{c}{3} \sin{\frac{3\pi}{2}} + \frac{1}{5} \cos{\pi}

\displaystyle -1 = \frac{4}{5} (0) + \frac{c}{3} (-1) + \frac{1}{5} (-1)

\displaystyle -1 = - \frac{c}{3} - \frac{1}{5}

\displaystyle \frac{c}{3} = 1 - \frac{1}{5}

\displaystyle \frac{c}{3} = \frac{4}{5}

\displaystyle c = \frac{12}{5}

Ahora, sustituyendo el valor de c en el resultado y(t)

\displaystyle y(t) = \frac{4}{5} \cos{3t} + \frac{c}{3} \sin{3t} + \frac{1}{5} \cos{2t}

\displaystyle y(t) = \frac{4}{5} \cos{3t} + \frac{\frac{12}{5}}{3} \sin{3t} + \frac{1}{5} \cos{2t}

\displaystyle y(t) = \frac{4}{5} \cos{3t} + \frac{12}{15} \sin{3t} + \frac{1}{5} \cos{2t}

\displaystyle y(t) = \frac{4}{5} \cos{3t} + \frac{4}{5} \sin{3t} + \frac{1}{5} \cos{2t}

\displaystyle y(t) = \frac{4}{5} (\cos{3t} + \sin{3t}) + \frac{1}{5} \cos{2t}

Finalmente,

\displaystyle \therefore y(t) = \frac{4}{5} (\cos{3t} + \sin{3t}) + \frac{1}{5} \cos{2t}


Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.