Introducción

Sea C una curva suave en un intervalo abierto I representada por \mathbf{r}. Si \mathbf{T}' (t) \ne 0, entonces el vector unitario normal principal en t se define como

\displaystyle \mathbf{N} (t) = \frac{\mathbf{T} ' (t)}{|| \mathbf{T} ' (t) ||}

Problemas resueltos

Problema 1. Encontrar \mathbf{N} (t) y \mathbf{N} (1) para la curva representada por \mathbf{r} (t) = 3t \mathbf{i} + 2t^2 \mathbf{j}.

Solución. De la función dada por el problema, se determina su primera derivada

\displaystyle \mathbf{r} (t) = 3t \mathbf{i} + 2t^2 \mathbf{j}

\displaystyle \frac{d}{dt} [\mathbf{r} (t)] = \frac{d}{dt} [3t \mathbf{i} + 2t^2 \mathbf{j}]

\displaystyle \mathbf{r}' (t) = \frac{d}{dt} (3t) \mathbf{i} + \frac{d}{dt} (2t^2) \mathbf{j}

\displaystyle \mathbf{r}' (t) = 3 \mathbf{i} + 4t \mathbf{j}

Determinando su magnitud

\displaystyle ||\mathbf{r}' (t)|| = ||3 \mathbf{i} + 4t \mathbf{j}||

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{{(3)}^2 + {(4t)}^2}

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{9 + 16t^2}

Tomando la fórmula del vector unitario tangente y sustituyendo resulta lo siguiente

\displaystyle \mathbf{T} (t) = \frac{\mathbf{r}' (t)}{|| \mathbf{r}' (t)||}

\displaystyle \mathbf{T} (t) = \frac{3 \mathbf{i} + 4t \mathbf{j}}{\sqrt{9 + 16t^2}}

\displaystyle \mathbf{T} (t) = \frac{1}{\sqrt{9 + 16t^2}} \left( 3 \mathbf{i} + 4t \mathbf{j} \right)

De este último resultado, se determina su primera derivada

\displaystyle \frac{d}{dt} [\mathbf{T} (t)] = \frac{d}{dt} \left[\frac{1}{\sqrt{9 + 16t^2}} \left( 3 \mathbf{i} + 4t \mathbf{j} \right) \right]

\displaystyle \frac{d}{dt} [\mathbf{T} (t)] = \frac{d}{dt} \left[\frac{3 \mathbf{i} + 4t \mathbf{j}}{\sqrt{9 + 16t^2}} \right]

\displaystyle \mathbf{T}' (t) = \frac{(\sqrt{9 + 16t^2}) \frac{d}{dt} (3 \mathbf{i} + 4t \mathbf{j}) - (3 \mathbf{i} + 4t \mathbf{j}) \frac{d}{dt} (\sqrt{9 + 16t^2})}{{(\sqrt{9 + 16t^2})}^2}

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^2} \left[(\sqrt{9 + 16t^2}) \frac{d}{dt} (3 \mathbf{i} + 4t \mathbf{j}) - (3 \mathbf{i} + 4t \mathbf{j}) \frac{d}{dt} (\sqrt{9 + 16t^2}) \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^2} \left[(\sqrt{9 + 16t^2}) (0 \mathbf{i} + 4 \mathbf{j}) - (3 \mathbf{i} + 4t \mathbf{j}) \frac{32t}{2\sqrt{9 + 16t^2}} \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^2} \left[(\sqrt{9 + 16t^2}) (0 \mathbf{i} + 4 \mathbf{j}) \cdot \frac{\sqrt{9 + 16t^2}}{\sqrt{9 + 16t^2}} - (3 \mathbf{i} + 4t \mathbf{j}) \frac{16t}{\sqrt{9 + 16t^2}} \cdot \frac{\sqrt{9 + 16t^2}}{\sqrt{9 + 16t^2}} \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^2} \left[ \frac{(\sqrt{9 + 16t^2})^2}{\sqrt{9 + 16t^2}} \cdot (0 \mathbf{i} + 4 \mathbf{j}) - \frac{\sqrt{9 + 16t^2}}{(\sqrt{9 + 16t^2})^2} \cdot (48t \mathbf{i} + 64t^2 \mathbf{j}) \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^2} \left[ \frac{(9 + 16t^2)}{\sqrt{9 + 16t^2}} \cdot (0 \mathbf{i} + 4 \mathbf{j}) - \frac{1}{\sqrt{9 + 16t^2}} \cdot (48t \mathbf{i} + 64t^2 \mathbf{j}) \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^2} \cdot \frac{1}{{\sqrt{9 + 16t^2}}} \left[(9 + 16t^2) \cdot (0 \mathbf{i} + 4 \mathbf{j}) - (1) \cdot (48t \mathbf{i} + 64t^2 \mathbf{j}) \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^3} \left[0 \mathbf{i} + (36 + 64t^2) \mathbf{j} - 48t \mathbf{i} - 64t^2 \mathbf{j} \right]

\displaystyle \mathbf{T}' (t) = \frac{1}{{(\sqrt{9 + 16t^2})}^3} \left(- 48t \mathbf{i} + 36 \mathbf{j} \right)

\displaystyle \mathbf{T}' (t) = \frac{12}{{(\sqrt{9 + 16t^2})}^3} \left(- 4t \mathbf{i} + 3 \mathbf{j} \right) = \frac{12}{{(9 + 16t^2)}^{3/2}} \left(- 4t \mathbf{i} + 3 \mathbf{j} \right)

Obteniendo la magnitud de este último resultado

\displaystyle ||\mathbf{T}' (t)|| = ||\frac{12}{{(\sqrt{9 + 16t^2})}^3} \left(- 4t \mathbf{i} + 3 \mathbf{j} \right)||

\displaystyle ||\mathbf{T}' (t)|| = \sqrt{{\left[\frac{12}{{(\sqrt{9 + 16t^2})}^3} \right]}^2 \cdot {(- 4t)}^2 + {\left[\frac{12}{{(\sqrt{9 + 16t^2})}^3} \right]}^2 \cdot {(3)}^2}

\displaystyle ||\mathbf{T}' (t)|| = \sqrt{{\left[\frac{12}{{(\sqrt{9 + 16t^2})}^3} \right]}^2} \cdot \sqrt{{(- 4t)}^2 +  {(3)}^2}

\displaystyle ||\mathbf{T}' (t)|| = \frac{12}{{(\sqrt{9 + 16t^2})}^3} \cdot \sqrt{16t^2 +  9} = \frac{12}{{(\sqrt{9 + 16t^2})}^3} \cdot \sqrt{9 + 16t^2}

\displaystyle ||\mathbf{T}' (t)|| = \frac{12}{{(\sqrt{9 + 16t^2})}^2}

\displaystyle ||\mathbf{T}' (t)|| = \frac{12}{9 + 16t^2}

Determinando el vector unitario normal, resulta que

\displaystyle \mathbf{N} (t) = \frac{\mathbf{T} ' (t)}{|| \mathbf{T} ' (t) ||}

\displaystyle \mathbf{N} (t) = \frac{\frac{12}{{(9 + 16t^2)}^{3/2}} \left(- 4t \mathbf{i} + 3 \mathbf{j} \right)}{\frac{12}{9 + 16t^2}}

\displaystyle \mathbf{N} (t) = \frac{\frac{12}{{(9 + 16t^2)}^{3/2}}}{\frac{12}{9 + 16t^2}} \ \left(- 4t \mathbf{i} + 3 \mathbf{j} \right)

\displaystyle \mathbf{N} (t) = \frac{1}{{(9 + 16t^2)}^{1/2}} \ \left(- 4t \mathbf{i} + 3 \mathbf{j} \right)

\displaystyle \therefore \mathbf{N} (t) = \frac{1}{\sqrt{9 + 16t^2}} \ \left(- 4t \mathbf{i} + 3 \mathbf{j} \right)

Finalmente, el valor de \mathbf{N} (1) (es decir, cuando t=1) es

\displaystyle \mathbf{N} (1) = \frac{1}{\sqrt{9 + 16{(1)}^2}} \ \left[- 4(1) \mathbf{i} + 3 \mathbf{j} \right]

\displaystyle \mathbf{N} (1) = \frac{1}{\sqrt{9 + 16(1)}} \ \left(- 4 \mathbf{i} + 3 \mathbf{j} \right)

\displaystyle \mathbf{N} (1) = \frac{1}{\sqrt{9 + 16}} \ \left(- 4 \mathbf{i} + 3 \mathbf{j} \right)

\displaystyle \mathbf{N} (1) = \frac{1}{\sqrt{25}} \left(- 4 \mathbf{i} + 3 \mathbf{j} \right)

\displaystyle \therefore \mathbf{N} (1) = \frac{1}{5} \left(- 4 \mathbf{i} + 3 \mathbf{j} \right)

Figura 1. Representación gráfica del problema 1.

Problema 2. Encontrar el vector unitario normal principal para la hélice dada por \displaystyle \mathbf{r} (t) = 2 \cos{t} \mathbf{i} + 2 \sin{t} \mathbf{j} + t \mathbf{k}.

Solución. Primero se determina la primera deriva de la función vectorial \mathbf{r} (t).

\displaystyle \mathbf{r} (t) = 2 \cos{t} \mathbf{i} + 2 \sin{t} \mathbf{j} + t \mathbf{k}

\displaystyle \frac{d}{dt} [\mathbf{r} (t)] = \frac{d}{dt} [2 \cos{t}] \mathbf{i} + \frac{d}{dt} [2 \sin{t}] \mathbf{j} + \frac{d}{dt} [t] \mathbf{k}

\displaystyle \mathbf{r}' (t) = 2 \frac{d}{dt} [\cos{t}] \mathbf{i} + 2 \frac{d}{dt} [\sin{t}] \mathbf{j} + \frac{d}{dt} [t] \mathbf{k}

\displaystyle \mathbf{r}' (t) = - 2 \sin{t} \mathbf{i} + 2 \cos{t} \mathbf{j} + \mathbf{k}

Después, se determina su magnitud

\displaystyle ||\mathbf{r}' (t)|| = ||- 2 \sin{t} \mathbf{i} + 2 \cos{t} \mathbf{j} + \mathbf{k}||

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{{(- 2 \sin{t})}^2 + {(2 \cos{t})}^2 + {(1)}^2}

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{4 \cos^2{t} + 4 \sin^2{t} + 1}

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{4 (\sin^2{t} + \cos^2{t}) + 1}

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{4 (1) + 1} = \sqrt{4 + 1}

\displaystyle ||\mathbf{r}' (t)|| = \sqrt{5}

Tomando la fórmula de vector unitario tangentes y sustituyendo

\displaystyle \mathbf{T} (t) = \frac{\mathbf{r}' (t)}{||\mathbf{r}' (t)||}

\displaystyle \mathbf{T} (t) = \frac{- 2 \sin{t} \mathbf{i} + 2 \cos{t} \mathbf{j} + \mathbf{k}}{\sqrt{5}}

\displaystyle \mathbf{T} (t) = \frac{1}{\sqrt{5}} (- 2 \sin{t} \mathbf{i} + 2 \cos{t} \mathbf{j} + \mathbf{k})

De este último resultado se obtiene su primera derivada

\displaystyle \frac{d}{dt} [\mathbf{T} (t)] = \frac{d}{dt} [\frac{1}{\sqrt{5}} (- 2 \sin{t} \mathbf{i} + 2 \cos{t} \mathbf{j} + \mathbf{k})]

\displaystyle \mathbf{T}' (t) = - \frac{2}{\sqrt{5}} \frac{d}{dt} [\sin{t}] \mathbf{i} + \frac{2}{\sqrt{5}} \frac{d}{dt} [\cos{t}] + \frac{1}{\sqrt{5}} \frac{d}{dt} [1] \mathbf{k}

\displaystyle \mathbf{T}' (t) = - \frac{2}{\sqrt{5}} \cos{t} \mathbf{i} - \frac{2}{\sqrt{5}} \sin{t} + \frac{1}{\sqrt{5}} (0) \mathbf{k}

\displaystyle \mathbf{T}' (t) = - \frac{2}{\sqrt{5}} \cos{t} \mathbf{i} - \frac{2}{\sqrt{5}} \sin{t} = \frac{2}{\sqrt{5}} (-\cos{t} \mathbf{i} - \sin{t})

Y también su magnitud

\displaystyle ||\mathbf{T}' (t)|| = ||- \frac{2}{\sqrt{5}} \cos{t} \mathbf{i} - \frac{2}{\sqrt{5}} \sin{t}||

\displaystyle ||\mathbf{T}' (t)|| = \sqrt{{\left(- \frac{2}{\sqrt{5}} \cos{t} \right)}^2 + {\left(- \frac{2}{\sqrt{5}} \sin{t} \right)}^2}

\displaystyle ||\mathbf{T}' (t)|| = \sqrt{\frac{4}{5} \cos^2{t} + \frac{4}{5} \sin^2{t}}

\displaystyle ||\mathbf{T}' (t)|| = \sqrt{\frac{4}{5} (\cos^2{t} + \sin^2{t})}

\displaystyle ||\mathbf{T}' (t)|| = \sqrt{\frac{4}{5} (1)} = \sqrt{\frac{4}{5}}

\displaystyle ||\mathbf{T}' (t)|| = \frac{2}{\sqrt{5}}

Usando la fórmula del vector unitario normal principal y sustituyendo, resulta que

\displaystyle \mathbf{N} (t) = \frac{\mathbf{T} ' (t)}{|| \mathbf{T} ' (t) ||}

\displaystyle \mathbf{N} (t) = \frac{\frac{2}{\sqrt{5}} (-\cos{t} \mathbf{i} - \sin{t})}{\frac{2}{\sqrt{5}}}

\displaystyle \therefore \mathbf{N} (t) = -\cos{t} \mathbf{i} - \sin{t}

Figura 2. Representación gráfica de la función «r (t)» del problema 2.

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.